


Domain-Driven Design in PHP
 
 
  
 
 
 
 

A Highly Practical Guide
 
 
 
 
 
 

Carlos Buenosvinos
Christian Soronellas
Keyvan Akbary

BIRMINGHAM - MUMBAI



Domain-Driven Design in PHP

Copyright © 2017 Carlos Buenosvinos, Christian Soronellas, Keyvan Akbary

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1090617

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham 
B3 2PB, UK.

ISBN 978-1-78728-494-4

www.packtpub.com

http://www.packtpub.com


Credits

Authors

Carlos Buenosvinos
Christian Soronellas
Keyvan Akbary

Technical Editor

Joel Wilfred D'souza

Acquisition Editor

Frank Pohlmann

Layout co-ordinator

Aparna Bhagat

Indexer

Pratik Shirodkar

  



Foreword
I must admit that when I first heard of the Domain-Driven Design in PHP initiative, I was a
bit worried. The danger was twofold: first of all, when glancing over the table of contents,
the subject matter looked like it was a rehash of content that was already available in
several other Domain-Driven Design books. Second, writing a book on Domain-Driven
Design targeted specifically toward the PHP community seemed needlessly narrowing,
particularly as Domain-Driven Design itself is not language specific. As such, this might
inhibit PHP developers from looking past the boundaries of their own community,
especially when considering that there's a lot going on beyond the scope of PHP. In fact,
even Domain-Driven Design is one of those things, as it didn't originate in the PHP
community.

After reading the book, I'm happy to inform you that my worries have been invalidated!

With regard to my first concern: of course there is some overlap with previously published
Domain-Driven Design books. Yet the authors have restrained themselves. The theoretical
parts are exactly what you need to be able to understand what's going on in the code
samples. Besides, if you never read another Domain-Driven Design book, this one gives you
what you need to start applying some Domain-Driven Design principles and patterns in
your code, as it's practical by nature.

My second concern — about the PHP aspect of this book — has been addressed very well. It
turns out there are a lot of things to say about Domain-Driven Design in a PHP world. This
book is specifically targeted at an audience consisting of PHP developers. The code samples
resemble real-world PHP projects, and the authors use a programming style we know from
projects using Symfony or Silex. For persisting Domain objects, Doctrine ORM — which is
the de facto standard data mapper for PHP — is used.

This book also fulfills a need I've often seen in the PHP community: the need for concrete
examples. It's not always easy for authors to come up with proper illustrations of how to
apply certain ideas that have a low risk of being misinterpreted or abused in real-world
projects. And in Domain-Driven Design, which is philosophical by nature, this is even more
challenging.



In the case of this book, the authors haven't been afraid to show many useful examples,
along with some interesting alternative solutions. They aren't just handwaving at solutions
either; they take the time to provide detailed explanations — such as when they talk about
saving snapshots for Aggregates with a large number of Domain Events, or when they
discuss integrating Bounded Contexts using RabbitMQ. I can't recall having previously seen
an implementation of these things in a book or article on Domain-Driven Design.

For me personally, Domain-Driven Design is one the most interesting subjects in software
development today. There is so much to discover, and there are many subjects related to it:
Agile software development, TDD, and BDD, but also living documentation, visualization,
and knowledge crunching techniques. Once you start looking into all of this, you'll realize
that Domain-Driven Design is an area of expertise worth investigating, as it enables you to
add much more to your own worth as a software developer.

So, I guess what I want to say is this: dive into this book, learn from it, and then pick up
another book (see the list of references at the end of this book for suggestions of future
reading). Continuous learning is a fundamental part of keeping up to date in the software
industry, so don't stop here.

Oh, and by the way: if you get a chance to go to Barcelona, make sure you take part in one
of the many PHP or Symfony events. The community is big, friendly, and full of interesting
ideas. You'll find the authors of this book there too. They are all invested in the local PHP
community and are happy to share their insights and experiences with you!

Matthias Noback
Author of A Year with Symfony

http://martinfowler.com/bliki/TestDrivenDevelopment.html
https://dannorth.net/introducing-bdd/
https://leanpub.com/a-year-with-symfony


About the Authors
Carlos Buenosvinos is a PHP Extreme Programmer with more than 15 years of experience
developing web applications and more than 10 years experience as a Tech Lead and CTO
leading teams of between 20 and 100 people. He is a Certified ScrumMaster (CSM) and has
coached and trained close to two dozen different companies in Agile practices, both as an
employee and as a consultant. On the technical side, he is a Zend PHP Engineer, a Zend
Framework Engineer, and MySQL certified. He is also a board member of the PHP
Barcelona User Group. He has worked with e-commerce (Atrapalo and eBay), payment
processing (Vendo), classifieds (Emagister), and B2B recruiting tools (XING). He is
interested in JavaScript, DevOps, and Scala. He likes developing for mobile, Raspberry Pi,
and games.

Twitter: @buenosvinos
Web: h t t p s ://c a r l o s b u e n o s v i n o s . c o m

GitHub: h t t p s ://g i t h u b . c o m /c a r l o s b u e n o s v i n o s

Christian Soronellas is a passionate Software Developer, Software Journeyman, and
Craftsman Apprentice. He’s an Extreme Programmer soul with more than 10 years of
experience in web development. He’s also a Zend PHP 5.3 Certified Engineer, a Zend
Framework Certified Engineer, and a SensioLabs Certified Symfony Developer. He has
worked as a freelancer, as well as at Privalia, Emagister, Atrapalo, and Enalquiler as a
Software Architect.

Twitter: @theUniC
GitHub: https://github.com/theUniC

https://twitter.com/buenosvinos
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://carlosbuenosvinos.com
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://github.com/carlosbuenosvinos
https://twitter.com/theUniC
https://github.com/theUniC


Keyvan Akbary is a polyglot Software Developer who loves Software fundamentals, the
Craftsmanship movement, Extreme Programming, SOLID principles, Clean Code, Design
Patterns, and Testing. He’s also a sporadic Functional Programmer. He understands
technology as a medium for providing value. He has worked on countless projects as a
freelancer, on video streaming (Youzee), and on an online marketplace (MyBuilder) — all in
addition to founding a crowdfunding company (Funddy). Currently, Keyvan is working in
FinTech as a Lead Developer at TransferWise London.

Twitter: @keyvanakbary
Web: h t t p ://k e y v a n a k b a r y . c o m

GitHub: h t t p s ://g i t h u b . c o m /k e y v a n a k b a r y

http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
http://keyvanakbary.com
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary
https://github.com/keyvanakbary


Acknowledgments
First of all, we would like to thank all our friends and family. Without their support, writing
this book would have been an even more difficult task. Thanks for accommodating our
schedules and taking care of our children in order to free up time for us to focus on writing.
You're wonderful, and part of this book is also yours.

We are three Spaniards who wrote a book in English, so if you'd guess our English is far
from perfect, you'd be correct. Luckily for us, Edd Mann has supported us with the language
since the beginning. He's not just a great collaborator but also a great friend, and we owe
him a huge thanks. The final review was done by the professional copy editor Natalye
Childress. She has done a great work rewriting our words to make them understandable.
Thank you so much. Our book is easier and more enjoyable to read.

A group of PHP developers in Barcelona defends what we call el camino del rigor, or the path
of rigor. It existed before the craftsmanship movement, and it means to struggle with
everything stacked against us in order to build exceptional things in an exceptional way.
Two particular developers and friends from that group are Albert Casademont and Ricard
Clau, both of whom are extraordinary people committed to the community. Thank you so
much for helping with the revision process. Your contributions have been incredibly
valuable.

We would like to thank every developer who has worked with us in the companies where
we've applied Domain-Driven Design. We know you've been struggling when learning and
applying these concepts. Some of you weren't so open-minded at the beginning, but after
using the basic building blocks for a while, you became evangelists. Thanks for your faith.

Our book was for sale from the moment we put the first chapters on Leanpub. Early
adopters who bought the book in its beginning stages gave us the much needed love and
support to get this done. Thanks for the motivation to keep going.

Thanks also to Matthias Noback for his foreword and feedback on the book. The end result
is better because of his contributions.

https://twitter.com/edd_mann
http://www.natalye.com/
http://www.natalye.com/
https://twitter.com/acasademont
https://twitter.com/ricardclau
https://twitter.com/ricardclau
https://leanpub.com/ddd-in-php
https://twitter.com/matthiasnoback


A special mention to Vaughn Vernon — not just because his work was an incredible source
of information and inspiration for us, but also because he helped us find a good publisher,
gave us valuable advice, and shared ideas with us. Thanks so much for your help.

Last but not least, we'd like to express our gratitude to all the people who have reported
issues, made suggestions, and otherwise contributed to our GitHub repository. To all of
you, thank you. You've helped us make this book better. More importantly, you've helped
the community grow and helped other developers be better developers. As Robert C.
Martin wrote in his book, Clean Code: A Handbook of Agile Software Craftsmanship,
"You are reading this book for two reasons. First, you are a programmer. Second, you want
to be a better programmer. Good. We need better programmers." So thanks to Jordi Abad,
Jonathan Wondrusch, César Rodríguez, Yannick Voyer, Victor Guardiola, Oriol González,
Henry Snoek, Tom Jowitt, Sascha Schimke, Sven Herrmann, Daniel Abad, Luis Rovirosa,
Luis Cordova, Raúl Ramos, Juan Maturana, Nil Portugués, Nikolai Zujev, Fernando Pradas,
Raúl Araya, Neal Brooks, Hubert Béague, Aleksander Rekść, Sebastian Machuca, Nicolas
Oelgart, Sebastiaan Stok, Vladimir Hraban, Vladas Dirzys, and Marc Aube.

https://vaughnvernon.co/
https://github.com/dddinphp/ddd-in-php-book-issues
https://twitter.com/unclebobmartin
https://twitter.com/unclebobmartin
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882


www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt


Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. 

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

mailto:customerreviews&#064;packtpub.com


This book is dedicated to my dearest Vanessa, and to Valentina and Gabriela. Thanks for
your love, your support, and your patience.
                                                                                                                               – Carlos

To my dear Elena. Without your encouragement, your love, and your patience, this book
would not have been possible.
                                                                                                                            – Christian

To my parents, John and Mercedes, who raised me free of constraints. This will be the first
book of many. To my love, Clara, for your unconditional support and infinite patience.
                                                                                                                             –  Keyvan



Table of Contents
Preface 1

Chapter 1: Getting Started with Domain-Driven Design 7

Why Domain-Driven Design Matters 8
The Three Pillars of Domain-Driven Design 8

Ubiquitous Language 9
Event Storming 9

Considering Domain-Driven Design 10
The Tricky Parts 11
Strategical Overview 11
Related Movements: Microservices and Self-Contained Systems 12
Wrap-Up 14

Chapter 2: Architectural Styles 15

The Good Old Days 15
Layered Architecture 19

Model-View-Controller 20
Example of Layered Architecture 21

The Model 21
The View 23
The Controller 25

Inverting Dependencies: Hexagonal Architecture 26
The Dependency Inversion Principle (DIP) 26
Applying Hexagonal Architecture 27

Command Query Responsibility Segregation (CQRS) 29
The Write Model 31
The Read Model 34
Synchronizing the Write Model with the Read Model 36

Event Sourcing 42
Wrap-Up 49

Chapter 3: Value Objects 50

Definition 50
Value Object vs. Entity 51
Currency and Money Example 52
Characteristics 54

Measures, Quantifies, or Describes 54
Immutability 54



[ ii ]

Conceptual Whole 56
Value Equality 57
Replaceability 59
Side-Effect-Free Behavior 59

Basic Types 61
Testing Value Objects 61
Persisting Value Objects 63

Persisting Single Value Objects 64
Embedded Value with an Ad Hoc ORM 64
Embedded Value (Embeddables) with Doctrine >= 2.5.* 67
Embedded Value with Doctrine <= 2.4.* 69

Serialized LOB and Ad Hoc ORM 72
Improved Serialization with JMS Serializer 73

Serialized LOB with Doctrine 74
Doctrine Object Mapping Type 74
Doctrine Custom Types 76
Persisting a Collection of Value Objects 79
Collection Serialized into a Single Column 80
Collection Backed by a Join Table 81

Collection Backed by a Join Table with Doctrine 82
Collection Backed by a Join Table with an Ad Hoc ORM 85

Collection Backed by a Database Entity 85
NoSQL 86

PostgreSQL JSONB and MySQL JSON Type 86
Security 87
Wrap-Up 87

Chapter 4: Entities 88

Introduction 88
Objects Vs. Primitive Types 90
Identity Operation 92

Persistence Mechanism Generates Identity 92
Surrogate Identity 93
Active Record Vs. Data Mapper for Rich Domain Models 94

Client Provides Identity 95
Application Generates Identity 96
Other Bounded Context Generates Identity 99

Persisting Entities 99
Setting Up Doctrine 99
Mapping Entities 100

Mapping Entities Using Annotated Code 100
Mapping Entities Using XML 102
Mapping Entity Identity 103



[ iii ]

Final Mapping File 105
Testing Entities 106

DateTimes 109
Passing All Dates as Parameters 110
Test Class 111
External Fake 113
Reflection 115

Validation 116
Attribute Validation 116
Entire Object Validation 118

Decoupling Validation Messages 120
Validating Object Compositions 122

Entities and Domain Events 122
Wrap-Up 123

Chapter 5: Services 125

Application Services 126
Domain Services 128
Domain Services and Infrastructure Services 130

An Issue of Code Reuse 133
Testing Domain Services 135
Anemic Domain Models Vs Rich Domain Models 136

Anemic Domain Model Breaks Encapsulation 141
Anemic Domain Model Brings a False Sense of Code Reuse 141
How to Avoid Anemic Domain Models 142

Wrap-Up 142

Chapter 6: Domain-Events 143

Introduction 144
Definition 144

Short Story 145
Metaphor 146
Real-World Example 146

Characteristics 148
Naming Conventions 148
Domain Events and Ubiquitous Language 148
Immutability 149

Modeling Events 149
Doctrine Events 152
Persisting Domain Events 154

Event Store 155



[ iv ]

Publishing Events from the Domain Model 158
Publishing a Domain Event from an Entity 158
Publishing your Domain Events from Domain or Application Services 161
How the Domain Event Publisher Works 161
Setting Up DomainEventListeners 163
Testing Domain Events 165

Spreading the news to Remote Bounded Contexts 166
Messaging 166
Syncing Domain Services with REST 176

Wrap-Up 178

Chapter 7: Modules 179

General Overview 180
Leverage Modules in PHP 180

First-Level Namespacing 180
PEAR-Style Namespacing 180

PSR-0 and PSR-4 Namespacing 181
Bounded Contexts and Applications 184
Structuring Code in Modules 185

Design Guidelines 187
Modules in the Infrastructure Layer 190
Mixing Different Technologies 196
Modules in the Application Layer 198

Wrap-Up 198

Chapter 8: Aggregates 199

Introduction 199
Key Concepts 200

ACID 200
Transactions 201
Isolation Levels 204
Referential Integrity 204
Locking 205
Concurrency 205

Pessimistic Concurrency Control (PCC) 205
With Doctrine 206

Optimistic Concurrency Control 207
With Elasticsearch 207
With Doctrine 210

What Is an Aggregate? 213
What Martin Fowler Says... 213



[ v ]

What Wikipedia Says... 214
Why Aggregates? 214
A Bit of History 217
Anatomy of an Aggregate 217
Aggregate Design Rules 220

Design Aggregates Based in Business True Invariants 220
Small Aggregates Vs. Big Aggregates 223
Reference Other Entities by Identity 224
Modify One Aggregate Per Transaction and Request 224

Sample Application Service: User and Wishes 225
No Invariant, Two Aggregates 226
No More Than Three Wishes Per User 233

Pessimistic Concurrency Control 236
Optimistic Concurrency Control 238

Transactions 246
Wrap Up 246

Chapter 9: Factories 247

Factory Method on Aggregate Root 247
Forcing Invariants 248

Factory on Service 249
Building Specifications 249
Building Aggregates 254

Testing Factories 257
Object Mother 258
Test Data Builder 259

Wrap-Up 262

Chapter 10: Repositories 263

Definition 264
Repositories Are Not DAOs 264
Collection-Oriented Repositories 265

In-Memory Implementation 271
Doctrine ORM 272

Object Mapping 273
Doctrine Custom Mapping Types 273

Entity Manager 276
DQL Implementation 276

Persistence-Oriented Repository 278
Redis Implementation 278
SQL Implementation 280



[ vi ]

Extra Behavior 283
Querying Repositories 284

Specification Pattern 285
In-Memory Implementation 285
SQL Implementation 287

Managing Transactions 288
Testing Repositories 291
Testing Your Services with In-Memory Implementations 295
Wrap-Up 295

Chapter 11: Application 296

Requests 297
Building Application Service Requests 298
Request Design 300

Use Primitives 300
Serializable 300
No Business Logic 300
No Tests 300

Anatomy of an Application Service 301
Dependency Inversion 302
Instantiating Application Services 303

Customize an Application Service 305
Execution 306

One Class Per Application Service 306
Multiple Application Service Methods per Class 306

Returning Values 307
DTO from Aggregate Instances 308
Data Transformers 310

Multiple Application Services on Compound Layouts 313
AJAX Content Integration 313
ESI Content Integration 314
Symfony Sub Requests 314
One Controller, Multiple Application Services 314

Testing Application Services 315
Transactions 317
Security 319
Domain Events 319
Command Handlers 320

Tactician Library and Other Options 320
Wrap-Up 321

Chapter 12: Integrating Bounded Contexts 322

Integration Through the Data Store 322



[ vii ]

Integration Relationships 324
Customer - Supplier 324
Separate Ways 324
Conformist 325

Implementing Bounded Context Integrations 325
Modern RPC 325
Message Queues 330

Wrap-Up 335

Chapter 13: Hexagonal Architecture with PHP 336

Introduction 336
First Approach 337
Repositories and the Persistence Edge 339
Decoupling Business and Persistence 341
Migrating our Persistence to Redis 343
Decouple Business and Web Framework 344
Rating an Idea Using the API 347
Console App Rating 349
Testing Rating an Idea UseCase 350
Testing Infrastructure 354
Arggg, So Many Dependencies! 355
Domain Services and Notification Hexagon Edge 357
Let's Recap 358
Hexagonal Architecture 359
Key Points 359
What's Next? 359

Chapter 14: Bibliography 360

Chapter 15: The End 362

Index 363



Preface
In 2014, after two years of reading about and working with Domain-Driven Design, Carlos
and Christian, friends and workmates, traveled to Berlin to participate in Vaughn Vernon's
Implementing Domain-Driven Design Workshop. The training was fantastic, and all the
concepts that were swirling around in their minds prior to the trip suddenly became very
real. However, they were the only two PHP developers in a room full of Java and .NET
developers.

Around the same time, php[tek], an annual PHP conference, opened its call for papers, and
Carlos sent one about Hexagonal Architecture. His talk was rejected, but Eli White — of
musketeers.me and php[architect] fame — got in touch with him a month later
wondering if he was interested in writing an article about Hexagonal Architecture for the
magazine php[architect]. So in June 2014, Hexagonal Architecture with PHP was published.
That article, which you'll find in the Appendix, was the origin of this book.

In late 2014, Carlos and Christian talked about extending the article and sharing all their
knowledge of and experience in applying Domain-Driven Design in production. They were
very excited about the idea behind the book: helping the PHP community delve into
Domain-Driven Design from a practical approach. At that time, concepts such as Rich
Domain Models and framework-agnostic applications weren't so common in the PHP
community. So in December 2014, the first commit to the GitHub book repository was
pushed.

Around the same time, in a parallel universe, Keyvan co-founded Funddy, a crowdfunding
platform for the masses built on top of the concepts and building blocks of Domain-Driven
Design. Domain-Driven Design proved itself effective in the exploratory process and
modeling of building an early-stage startup like Funddy. It also helped handle the
complexity of the company, with its constantly changing environment and requirements.
And after connecting with Carlos and Christian and discussing the book, Keyvan proudly
signed on as the third writer.

https://idddworkshop.com
https://tek.phparch.com
http://musketeers.me
https://www.phparch.com


Preface

[ 2 ]

Together, we've written the book we wanted to have when we started with Domain-Driven
Design. It's full of examples, production-ready code, shortcuts, and our recommendations
based on our experiences of what worked and what didn't for our respective teams. We
arrived at Domain-Driven Design via its building blocks — Tactical Patterns — which is
why this book is mainly about them. Reading it will help you learn them, write them, and
implement them. You'll also discover how to integrate Bounded Contexts using
synchronous and asynchronous approaches, which will open your world to strategic design
— though the latter is a road you'll have to discover on your own.

This book is heavily inspired by Implementing Domain-Driven Design by Vaughn Vernon
(aka the Red Book), and Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans (aka the Blue Book). You should buy both books. You should read
them carefully. You should love them.

Who Should Read This Book
If you're a PHP Developer, Architect, or Tech Lead, we highly recommend this book. It will
help you become a better professional. It will give you a new overview of and approach to
the applications you're developing. If you're a Junior profile, getting into Value Objects,
Entities, Repositories, and Domain Events is important in order to model any Domain you'll
face in the future. For an average profile, understanding the benefits of Hexagonal
Architecture and the boundaries between your framework and your Application is key for
writing code that's easier to maintain in the real world (framework migrations, testing, etc.).
More advanced readers will have fun both exploring how to use Domain Events in order to
integrate Applications and delving deeper into Aggregate design.

Although Domain-Driven Design is not about technology, you still need it to make HTTP
requests to access your Domain. Throughout the book, we recommend using specific PHP
frameworks and libraries, such as Symfony, Silex, and Doctrine. For some examples, we
also use specific technologies, such as MySQL, RabbitMQ, Redis, and Elasticsearch.
However, most important are the behind-the-scenes concepts — concepts that are
applicable regardless of the technology used to implement them.

http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Preface

[ 3 ]

Additionally, the book is loaded with tons of details and examples, such as how to properly
design and implement all the building blocks of Domain-Driven Design — including Value
Objects, Entities, Services, Domain Events, Aggregates, Factories, Repositories, and
Application Services — with PHP. It explains what the role of the main PHP libraries and
frameworks used in Domain-Driven Design are. The book also teaches how to apply
Hexagonal Architecture within your application, regardless of whether you use an open
source framework or your own one. Finally, it shows how to integrate Bounded Contexts
using REST frameworks and messaging mechanisms. If you're interested in any of these
subjects, this book is for you.

DDD and PHP Community
In 2016, Carlos and Christian went to the first official Domain-Driven Design conference,
DDD Europe. They were really happy to see some PHP open source leaders, such as Marco
Pivetta (Doctrine) and Sebastian Bergmann (PHPUnit), attending the conference.

Domain-Driven Design arrived in the PHP community two years prior to that conference.
However, there's still a lack of documentation and real code examples. Why? We think not
many people have worked with this kind of approach in production yet — even people in
other more established communities such as Java. Maybe this is because their project
complexity is low, or maybe it's because they don't know how to do it. Whatever the reason,
this book is written for the community. One of our goals is to teach you how you can write
an application that solves your Domain issues without being coupled to specific
frameworks or technologies.

Summary of Chapters
The book is arranged with each chapter exploring a separate tactical building block of
Domain-Driven Design. It also includes an introduction to Domain-Driven Design,
information on how to integrate different Bounded Contexts or applications, and an
appendix.

Chapter 1: Getting Started with Domain-Driven
Design
What is Domain-Driven Design about? What role does it play in complex systems? Is it
worth learning about and exploring? What are the main concepts a developer needs to
know when jumping into it?

http://dddeurope.com/


Preface

[ 4 ]

Chapter 2: Architectural Styles
Bounded Contexts can be implemented in different ways and using different approaches.
However, two styles are getting more popular, and they are Hexagonal Architecture and
CQRS + ES. In this chapter, we'll see these two main Architectural Styles, understand what
their main strengths are, and discover when to use them.

Chapter 3: Value Objects
Value Objects are the basic pieces for rich modeling. We'll learn what their properties are
and what makes them so important. We'll figure out how to persist them using Doctrine
and custom ORMs. We'll show how to properly validate and unit test them. And finally,
we'll see what a test case of testing immutability looks like.

Chapter 4: Entities
Entities are Domain-Driven Design building blocks that are uniquely identified and
mutable. We'll see how to create and validate them and how to properly map them using a
custom ORM and Doctrine. We'll also assess whether or not annotations are the best
mapping approach for Entities and look at the different strategies for generating an
Identity.

Chapter 5: Domain Services
In this chapter, you'll learn about what a Domain Service is and when to use it. We'll review
what Anemic Domain Models and Rich Domain Models are. Lastly, we'll deal with
Infrastructure issues when writing Domain Services.

Chapter 6: Domain-Events
Domain Events are a great Inversion of Control (IoC) mechanism. In Domain-Driven
Design, they're important for communicating different Bounded Contexts asynchronously,
improving your Application performance using eventual consistency, and decoupling your
Application from its Infrastructure.

Chapter 7: Modules
With so many tactical building blocks, it's a bit difficult to know where to place them in
code, especially if you're dealing with a framework like Symfony. We'll review how PHP
namespaces can be used for implementing Modules. We'll also discover different



Preface

[ 5 ]

hierarchies of folders for organizing Domain Model code, Application Code, and
Infrastructure Code.

Chapter 8: Aggregates
Aggregates are probably the most difficult part of tactical Domain-Driven Design. We'll
look at the key concepts when dealing with them and discover how to design them. We'll
also propose a practical scenario where two Aggregates become one when adding a
business rule, and we'll demonstrate how the rest of the objects must be refactored.

Chapter 9: Factories
Factory Methods and objects help us keep business invariants, which is why they're so
important in Domain-Driven Design. Here, we'll also explore the relationship between
Factories and Aggregates.

Chapter 10: Repositories
Repositories are key for retrieving and adding Entities and Aggregates to collections. We'll
review the different types of Repositories and learn how to implement them using Doctrine,
custom ORMs, and Redis.

Chapter 11: Application
An Application is the thin layer that connects outside clients to your Domain. In this
chapter, we'll show you how to write your Application Services so that they're easy to test
and keep thin. We'll also review how to prepare request objects, define dependencies, and
return results.

Chapter 12: Integrating Bounded Contexts
We'll explore the different tactical approaches to communicate Bounded Contexts and see
real implementations. REST is our suggestion for synchronous communication, and
messaging with RabbitMQ is our suggestion for asynchronous communication.

Appendix: Hexagonal Architecture with PHP
Here is where you'll find the original article written by Carlos and published by
php[architect] in June 2014.



Preface

[ 6 ]

Code and Examples
The authors have created an organization at GitHub called Domain-Driven Design in PHP,
which is where all the code examples from this book, additional snippets, and some
complete sample projects are available. For example, you can find Last Wishes, a simple
Domain-Driven Design-style application showing different examples explained in this
book. Additionally, you'll find our CQRS Blog, along with Gamify, a Bounded Context that
adds gamification capabilities to Last Wishes.

Finally, if you find any issue or fix or have a suggestion or comment while reading this
book, you can create an issue in the DDD in PHP Book Issues repository. We fix them as
they come in. If you're interested, we also urge you to watch our projects and provide
feedback.

https://github.com/dddinphp
https://github.com/dddinphp/last-wishes
https://github.com/dddinphp/blog-cqrs
https://github.com/dddinphp/last-wishes-gamify
https://github.com/dddinphp/book-issues


1
Getting Started with Domain-

Driven Design
So what is all the fuss about? If you've already read books on this topic by Vaughn Vernon
and Eric Evans, you're probably familiar with what we're about to say, as we borrow
heavily from their definitions and explanations. Domain-Driven Design (DDD), is an
approach that helps us succeed in understanding and building software model designs. It
provides us with strategic and tactical modeling tools to aid designing high-quality software
that meets our business goals.

The main goal of this book is to show you PHP code examples of the
Domain-Driven Design tactical patterns. If you want to learn more about
the strategic patterns and the main Domain-Driven Design, you should
read Domain Driven Design Distilled by Vaughn Vernon or Domain-
Driven Design Reference: Definitions and Pattern Summaries by
Eric Evans.

More importantly, Domain-Driven Design is not about technology. Instead, it's about
developing knowledge around business and using technology to provide value. Only once
you're capable of understanding the business your company works within will you be able
to participate in the software model discovery process to produce a Ubiquitous Language.

https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
https://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198


Getting Started with Domain-Driven Design

[ 8 ]

Why Domain-Driven Design Matters
Software is not just about code. If you think about it, code is rarely the end goal of our
profession. Code is just the medium to solve business problems. So why does it have to talk
a different language? Domain-Driven Design emphasizes making sure businesses and
software speak the same language. Once broken the barrier, there is no need for translations
or tedious syncing, information doesn't get lost. Everyone contributes to discovering the
Business Domain, not just coders. The resulting software is the only truth for the common
language.

Domain-Driven Design it also provides a framework for strategic and tactical design —
strategic to pinpoint the most important areas to develop based on business value, and
tactical to build a working Domain Model of battle-tested building blocks and patterns.

The Three Pillars of Domain-Driven Design
Domain-Driven Design is an approach for delivering software, and it's focused on three
pillars:

Ubiquitous Language: Domain Experts and software developers work together1.
to build a common language for the business areas being developed. There's no
us versus them; it's always us. Developing software is a business investment and
not just a cost. The effort involved in building the Ubiquitous Language helps
spread deep Domain insight among all team members.
Strategic Design: Domain-Driven Design addresses the strategy behind the2.
direction of the business and not just the technical aspects. It helps define the
internal relationships and early warning feedback systems. On the technical side,
strategic design protects each business service by providing the motivation for
how an service-oriented architecture should be achieved.
Tactical Design: Domain-Driven Design provides the tools and the building3.
blocks for iterative software deliverable. Tactical design tools produce software
that is not only correct, but that is also testable and less error prone.



Getting Started with Domain-Driven Design

[ 9 ]

Ubiquitous Language
Along with  Chapter 12, Integrating Bounded Contexts, Ubiquitous Language is one of the
main strengths of Domain-Driven Design.

In Terms of Context
For now, consider that a Bounded Context is a conceptual boundary around a
system. The Ubiquitous Language inside a boundary has a specific contextual
meaning. Concepts outside of this context can have different meanings.

So, how to find, explore and capture this very special language, the following pointers
would highlight the same:

Identify key business processes, their inputs, and their outputs
Create a glossary of terms and definitions
Capture important software concepts with some kind of documentation
Share and expand upon the collected knowledge with the rest of the team
(Developers and Domain Experts)

Since Domain-Driven Design was born, new techniques for improving the process of
building the Ubiquitous Language have emerged. The most important one, which is used
regularly now, is Event Storming.

Event Storming
Alberto Brandolini explains Event Storming and its advantages in a blog post, and he does
it far more succinctly than we could.Event Storming is a workshop format for quickly
exploring complex business domains:

It is powerful: It has allowed me and many practitioners to come up with a
comprehensive model of a complete business flow in hours instead of weeks.
It is engaging: The whole idea is to bring people with the questions and people
who know the answer in the same room and to build a model together.
It is efficient: The resulting model is perfectly aligned with a Domain-Driven
Design implementation style (particularly fitting an Event Sourcing approach),
and allows for a quick determination of Context and Aggregate boundaries.

http://ziobrando.blogspot.com.es/2013/11/introducing-event-storming.html


Getting Started with Domain-Driven Design

[ 10 ]

It is easy: The notation is ultra-simple. No complex UML that might cut off
participants from the heart of the discussion.
It is fun: I always had a great time leading the workshops, people are energized
and deliver more than they expected. The right questions arise, and the
atmosphere is the right one.

If you want to know more about Event Storming, check out Brandolini's book, Introducing
EventStorming.

Considering Domain-Driven Design
Domain-Driven Design is not a silver bullet; as with everything in software, it depends on
the context. As a rule of thumb, use it to simplify your Domain, but never to add more
complexity.

If your application is data-centric and your use cases mainly manipulate rows in a database
and perform CRUD operations — that is, Create, Read, Update, and Delete — you don't
need Domain-Driven Design. Instead, the only thing your company needs is a fancy face in
front of your database.

If your application has less than 30 use cases, it might be simpler to use a framework like
Symfony or Laravel to handle your business logic.

However, if your application has more than 30 use cases, your system may be moving
toward the dreaded Big Ball of Mud. If you know for sure your system will grow in
complexity, you should consider using Domain-Driven Design to fight that complexity.

If you know your application is going to grow and is likely to change often, Domain-Driven
Design will definitely help in managing the complexity and refactoring your model over
time.

If you don't understand the Domain you're working on because it's new and nobody has
invested in a solution before, this might mean it's complex enough for you to start applying
Domain-Driven Design. In this case, you'll need to work closely with Domain Experts to get
the models right.

https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
https://en.wikipedia.org/wiki/Big_ball_of_mud


Getting Started with Domain-Driven Design

[ 11 ]

The Tricky Parts
Applying Domain-Driven Design is not easy. It requires time and effort to get around the
Business Domain, terminology, research, and collaboration with Domain Experts rather
than coding jargon. You'll need to have the commitment of Domain Experts for getting
involved in the process too. This will requires an open and healthy continuous conversation
to model their spoken language into software. On top of that, we'll have to make an effort to
avoid thinking technically, to think seriously about the behavior of objects and the
Ubiquitous Language first.

Strategical Overview
In order to provide a general overview of the strategical side of Domain-Driven Design,
we'll use an approach from Jimmy Nilsson's book, Applying Domain-Driven Design and
Patterns. Consider two different spaces: the problem space and the solution space.

In the problem space, Domain-Driven Design uses Domains and Subdomains to group and
organize what companies want to solve. In the case of an Online Travel Agency (OTA), the
problem is about dealing with things like flight tickets and booking hotels. Such a Domain
can be organized into different Subdomains such as Pricing, Inventory, User Management,
and so on.

In the solution space, Domain-Driven Design provides two patterns: Bounded Contexts and
Context Maps. The goal is to define how to provide an implementation to all the identified
Subdomains by defining their interactions and the details of those interactions. Continuing
with the OTA example, each of the Subdomains will be solved with a Bounded Context
implementation — for example, consider a custom Web Application developed by a team
for the Pricing Management Subdomain, and an off-the-shelf solution for the User
Management Subdomain. The Context Map will show how each Bounded Context is
related to the rest. Inside the Context Map, we can see what type of relation two Bounded
Contexts have (example: customer-supplier, partners). The ideal approach is to have each
Subdomain implemented by one Bounded Context, but that's not always possible. In terms
of implementation, when following Domain-Driven Design, you'll end up with distributed
architectures. As you may already know, distributed architectures are more complex than
monolithic ones, so why is this approach interesting, especially for big and complex
companies? Is it really worth it? Well, it is.

Distributed architectures are proven to increase overall company productivity because they
define boundaries for your product that can be developed by focused teams.

https://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
https://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202


Getting Started with Domain-Driven Design

[ 12 ]

If your Domain — the problem you need to solve  — is not complex, applying the
strategical part of Domain-Driven Design can add unnecessary overhead and slow down
your development speed.

If you want to know more about the strategical part of Domain-Driven Design, you should
take a look at the first three chapters of Vaughn Vernon's book, Implementing Domain-
Driven Design, or the book Domain-Driven Design: Tackling Complexity in the Heart
of Software by Eric Evans, both of which specifically focus on this aspect.

Related Movements: Microservices and Self-
Contained Systems
There are other movements promoting architectures that follow the same principles
Domain-Driven Design is promoting. Microservices and Self-Contained Systems are good
examples of this. James Lewis and Martin Fowler define Microservices in the Microservices
Resource Guide:

The Microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and are also independently
deployable using fully automated machinery. There is a bare minimum of
centralized management of these services, which may be written in different
programming languages and also use different data storage technologies.

If you want to know more about Microservices, their guide is a good place to start.How is
this related to Domain-Driven Design? As explained in Sam Newman's book, Building
Microservices, Microservices are implementations of Domain-Driven Design Bounded
Contexts.

In addition to Microservices, another related movement is Self-Contained Systems (SCS).
According to the Self-Contained Systems website:

The Self-contained System approach is an architecture that focuses on a separation
of the functionality into many independent systems, making the complete logical
system a collaboration of many smaller software systems. This avoids the problem
of large monoliths that grow constantly and eventually become unmaintainable.
Over the past few years, we have seen its benefits in many mid-sized and large-
scale projects. The idea is to break a large system apart into several smaller self-
contained system, or SCSs, that follow certain rules.

http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215)
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215)
http://martinfowler.com/microservices/
http://martinfowler.com/microservices/
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://scs-architecture.org


Getting Started with Domain-Driven Design

[ 13 ]

The website also spells out seven characteristics of SCS:

Each SCS is an autonomous web application. For the SCS's domain all data, the
logic to process that data and all code to render the web interface is contained
within the SCS. An SCS can fulfill its primary use cases on its own, without
having to rely on other systems being available.

Each SCS is owned by one team. This does not necessarily mean that only one
team might change the code, but the owning team has the final say on what goes
into the code base, for example by merging pull-requests.

Communication with other SCSs or 3rd party systems is asynchronous wherever
possible. Specifically, other SCSs or external systems should not be accessed
synchronously within the SCS's own request/response cycle. This decouples the
systems, reduces the effects of failure, and thus supports autonomy. The goal is
decoupling concerning time: An SCS should work even if other SCSs are
temporarily offline. This can be achieved even if the communication on the
technical level is synchronous, example by replicating data or buffering requests.

An SCS can have an optional service API. Because the SCS has its own web UI it
can interact with the user — without going through a UI service. However, an API
for mobile clients or for other SCSs might still be useful.

Each SCS must include data and logic. To really implement any meaningful
features both are needed. An SCS should implement features by itself and must
therefore include both.

An SCS should make its features usable to end-users by its own UI. Therefore the
SCS should have no shared UI with other SCSs. SCSs might still have links to each
other. However, asynchronous integration means that the SCS should still work
even if the UI of another SCS is not available. To avoid tight coupling an SCS
should share no business code with other SCSs. It might be fine to create a pull-
request for an SCS or use common libraries, example: database drivers or oAuth
clients.

Exercise
Discuss the pros and cons of such distributed architectures with your
workmates. Think about using different languages, deployment processes,
infrastructure responsibilities, and so on.



Getting Started with Domain-Driven Design

[ 14 ]

Wrap-Up
During this chapter you've learned:

Domain-Driven Design is not about technology; it's actually about providing
value in the field you're working in by focusing on the model. Everyone takes
part in the process of discovering the Domain, and developers and Domain
Experts team up to build the knowledge base by sharing the same language, the
Ubiquitous Language.
Domain-Driven Design provides tactical and strategic modeling tools to design
high-quality software. Strategic design targets the business direction, helps in
defining the internal relationships, and technically protects each business service
by defining strong boundaries. Tactical design provides useful building blocks
for iterative design.
Domain-Driven Design only makes sense in certain contexts. It's not a silver
bullet for every problem in software, so whether or not you use it highly depends
on the amount of complexity you're dealing with.
Domain-Driven Design is a long-term investment; it requires active effort.
Domain Experts will be required to collaborate closely with developers, and
developers will have to think in terms of the business. In the end, the business
customer is the one who has to be pleased.

Implementing Domain-Driven Design requires effort. If it were easy, everybody would be
writing high-quality code. Get ready, because you'll soon learn how to write code that,
when read, will perfectly describe the business your company operates on. Enjoy this
journey!



2
Architectural Styles

In order to be able to build complex applications, one of the key requirements is having an
architectural design that fits the application's needs. One advantage of Domain-Driven
Design is that it's not tied to any particular architecture style. Instead, we're free to choose
the architecture that best fits the needs of every Bounded Context inside the Core Domain,
which offers a diverse set of architectural choices for every specific Domain problem.

For example, an Order Processing System can use Event Sourcing to track all the different
order operations; a Product Catalog can use CQRS to expose the product details to the
different clients; and a Content Management System can use plain Hexagonal Architecture
to expose requirements such as blogs, static pages, and so on.

This chapter presents an introduction to every relevant architecture style in the land of
PHP, following the evolution from traditional old school PHP code to a more sophisticated
architecture. Please note that although there are many other existing architecture styles,
such as Data Fabric or SOA, we found some of them a bit too complex to introduce from the
PHP perspective.

The Good Old Days
Before the release of PHP 4, the language didn't embrace the Object-Oriented paradigm.
Back then, the usual way of writing applications was by using procedures and global state.
Concepts like Separation of Concerns (SoC) and Model-View-Controller (MVC) were
alien among the PHP community.



Architectural Styles

[ 16 ]

The example below is an application written in this traditional way, where applications
were composed of many front controllers mixed with HTML code. During this time,
Infrastructure-, Presentation-, UI-, and Domain-layer code were all tangled together:

include __DIR__ . '/bootstrap.php';

$link = mysql_connect('localhost', 'a_username', '4_p4ssw0rd');

if (!$link) {
    die('Could not connect: ' . mysql_error());
}

mysql_set_charset('utf8', $link);
mysql_select_db('my_database', $link);

$errormsg = null ;
if (isset($_POST['submit'] && isValid($_POST['post'])) {
    $post = getFrom($_POST['post']);
    mysql_query('START TRANSACTION', $link);
    $sql = sprintf(
        "INSERT INTO posts (title, content) VALUES ('%s','%s')",
        mysql_real_escape_string($post['title']),
        mysql_real_escape_string($post['content']
    ));

    $result = mysql_query($sql, $link);
    if ($result) {
        mysql_query('COMMIT', $link);
    } else {
        mysql_query('ROLLBACK', $link);
        $errormsg = 'Post could not be created! :(';
    }
}

$result = mysql_query('SELECT id, title, content FROM posts', $link);
?>
<html>
    <head></head>
    <body>
        <?php if (null !== $errormsg) : ?>
            <div class="alert error"><?php echo $errormsg; ?></div>
        <?php else: ?>
            <div class="alert success">
                Bravo! Post was created successfully!
            </div>
        <?php endif; ?>
        <table>
            <thead><tr><th>ID</th><th>TITLE</th>



Architectural Styles

[ 17 ]

            <th>ACTIONS</th></tr></thead>
            <tbody>
            <?php while($post = mysql_fetch_assoc($result)) : ?>
                <tr>
                    <td><?php echo $post['id']; ?></td>
                    <td><?php echo $post['title']; ?></td>
                    <td><?php editPostUrl($post['id']); ?></td>
                </tr>
            <?php endwhile; ?>
            </tbody>
        </table>
   </body>
 </html>
 <?php mysql_close($link); ?>

This style of coding is often referred to as the Big Ball of Mud we mentioned in the first
chapter. An improvement seen in this style, however, was to encapsulate the header and the
footer of the webpage in their own separate files, which were included in the header and
footer files. This avoided duplication and favored reuse:

include __DIR__ . '/bootstrap.php';

$link = mysql_connect('localhost', 'a_username', '4_p4ssw0rd');

if (!$link) {
    die('Could not connect: ' . mysql_error());
}

mysql_set_charset('utf8', $link);
mysql_select_db('my_database', $link);

$errormsg = null;

if (isset($_POST['submit'] && isValid($_POST['post'])) {
    $post = getFrom($_POST['post']);
    mysql_query('START TRANSACTION', $link);
    $sql = sprintf(
        "INSERT INTO posts(title, content) VALUES('%s','%s')",
        mysql_real_escape_string($post['title']),
        mysql_real_escape_string($post['content'])
    );

    $result = mysql_query($sql, $link);
    if ($result) {
        mysql_query('COMMIT', $link);
    } else {
        mysql_query('ROLLBACK', $link);
        $errormsg = 'Post could not be created! :(';



Architectural Styles

[ 18 ]

    }
}

$result = mysql_query('SELECT id, title, content FROM posts', $link);
?>
<?php include __DIR__ . '/header.php'; ?>
<?php if (null !== $errormsg) : ?>
    <div class="alert error"><?php echo $errormsg; ?></div>
<?php else: ?>
    <div class="alert success">
        Bravo! Post was created successfully!
    </div>
<?php endif; ?>
<table>
    <thead>
        <tr>
            <th>ID</th>
            <th>TITLE</th>
            <th>ACTIONS</th>
        </tr>
    </thead>
    <tbody>
    <?php while($post = mysql_fetch_assoc($result)): ?>
        <tr>
            <td><?php echo $post['id']; ?></td>
            <td><?php echo $post['title']; ?></td>
            <td><?php editPostUrl($post['id']); ?></td>
        </tr>
    <?php endwhile; ?>
    </tbody>
</table>
<?php include __DIR__ . '/footer.php'; ?>

Nowadays, and although it is highly discouraged, there are still applications that use this
procedural way of coding. The main disadvantage of this style of architecture is that there's
no real Separation of Concerns — the maintenance and cost of evolving an application
being developed this way increases drastically in relation to other well-known and proven
architectures.



Architectural Styles

[ 19 ]

Layered Architecture
From the code maintainability and reuse perspectives, the best way to make this code a bit
easier to maintain would be by splitting up concepts, that is creating layers for each
different concern. In our previous example, it's easy to shape different layers: one to
encapsulate the data access and manipulation, another one to handle infrastructure
concerns, and a final one for encapsulating the orchestration of the previous two. An
essential rule of Layered Architecture — is that each layer must be tightly coupled with the
layers beneath it, as shown in the following picture:

Layered Architecture for SoC



Architectural Styles

[ 20 ]

What Layered Architecture really seeks is the separation of the different components of an
application. For instance, in terms of the previous example, a blog post representation must
be completely independent of a blog post as a conceptual entity. A blog post as a conceptual
entity can instead be associated with one or more representations, as opposed to being
tightly coupled to a specific representation. This is commonly referred to as Separation of
Concerns.

Another architecture paradigm and pattern that seeks the same purpose is the Model-View-
Controller pattern. It was initially thought of and widely used for building desktop GUI
applications, and now it's mainly used in web applications, thanks to popular web
frameworks like Symfony, Zend Framework, and CodeIgniter.

Model-View-Controller
Model-View-Controller is an architectural pattern and paradigm that divides the
application into three main layers, described in the following points:

The Model: Captures and centralizes all the Domain Model behavior. This layer
manages all the data, logic, and business rules independently of the data
representation. It has been said that the Model layer is the heart and soul of
every MVC application.
The Controller: Orchestrates interactions between the other layers, triggers
actions on the Model in order to update its state, and refreshes the
representations associated with the Model. Additionally, the Controller can send
messages to the View layer in order to change the specific Model representation.
The View: Exposes the differing representations of the Model layer and provides
a way to trigger changes on the Model's state.

The MVC pattern



Architectural Styles

[ 21 ]

Example of Layered Architecture

The Model
Continuing with the previous example, we mentioned that different concerns should be
split up. In order to do so, all layers should be identified in our original tangled code.
Throughout this process, we need to pay special attention to the code conforming to the
Model layer, which will be the beating heart of the application:

class Post
{
    private $title;
    private $content;

    public static function writeNewFrom($title, $content)
    {
        return new static($title, $content);
    }

    private function __construct($title, $content)
    {
        $this->setTitle($title);
        $this->setContent($content);
    }

    private function setTitle($title)
    {
        if (empty($title)) {
            throw new RuntimeException('Title cannot be empty');
        }

        $this->title = $title;
    }

    private function setContent($content)
    {
        if (empty($content)) {
            throw new RuntimeException('Content cannot be empty');
        }

        $this->content = $content;
    }
}

class PostRepository
{



Architectural Styles

[ 22 ]

    private $db;

    public function __construct()
    {
        $this->db = new PDO(
            'mysql:host=localhost;dbname=my_database',
            'a_username',
            '4_p4ssw0rd',
            [
                PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES utf8mb4',
            ]
        );
    }

    public function add(Post $post)
    {
        $this->db->beginTransaction();

        try {
            $stm = $this->db->prepare(
                'INSERT INTO posts (title, content) VALUES (?, ?)'
            );

            $stm->execute([
                $post->title(),
                $post->content(),
            ]);

            $this->db->commit();
        } catch (Exception $e) {
            $this->db->rollback();
            throw new UnableToCreatePostException($e);
        }
    }
}



Architectural Styles

[ 23 ]

The Model layer is now defined by a Post class and a PostRepository class. The Post
class represents a blog post, and the PostRepository class represents the whole collection
of blog posts available. Additionally, another layer — one that coordinates and orchestrates
the Domain Model behavior — is needed inside the Model. Enter the Application layer:

class PostService
{
    public function createPost($title, $content)
    {
        $post = Post::writeNewFrom($title, $content);

        (new PostRepository())->add($post);

        return $post;
    }
}

The PostService class is what is known as an Application Service, and its purpose is to
orchestrate and organize the Domain behavior. In other words, the Application services are
the ones that make things happen, and they're the direct clients of a Domain Model. No
other type of object should be able to directly talk to the internal layers of the Model layer.

The View
The View is a layer that can both send and receive messages from the Model layer and/or
from the Controller layer. Its main purpose is to represent the Model to the user at the UI
level, as well as to refresh the representation in the UI each time the Model is updated.
Generally speaking, the View layer receives an object — often a Data Transfer
Object (DTO) instead of instances of the Model layer — thereby gathering all the needed
information to be successfully represented. For PHP, there are several template engines that
can help a great deal in separating the Model representation from the Model itself and from
the Controller. The most popular one by far is called Twig. Let's see how the View layer
would look with Twig.

DTOs Instead of Model Instances?
This is an old and active topic. Why create a DTO instead of giving an
instance of the Model to the View layer? The main reason and the short
answer is, again, Separation of Concerns. Letting the View inspect and use
a Model instance leads to tight coupling between the View layer and the
Model layer. In fact, a change in the Model layer can potentially break all
the views that make use of the changed Model instances.

http://twig.sensiolabs.org/


Architectural Styles

[ 24 ]

{% extends "base.html.twig" %}

{% block content %}
    {% if errormsg is defined %}
        <div class="alert error">{{ errormsg }}</div>
    {% else %}
        <div class="alert success">
            Bravo! Post was created successfully!
        </div>
    {% endif %}
    <table>
        <thead>
            <tr>
                <th>ID</th>
                <th>TITLE</th>
                <th>ACTIONS</th>
            </tr>
        </thead>
        <tbody>
        {% for post in posts %}
            <tr>
                <td>{{ post.id }}</td>
                <td>{{ post.title }}</td>
                <td><a href="{{ editPostUrl(post.id) }}">Edit Post</a></td>
            </tr>
        {% endfor %}
        </tbody>
    </table>
{% endblock %}

Most of the time, when the Model triggers a state change, it also notifies the related Views
so that the UI is refreshed. In a typical web scenario, the synchronization between the
Model and its representations can be a bit tricky because of the client-server nature. In these
kind of environments, some JavaScript-defined interactions are usually needed to maintain
that synchronization. For this reason, JavaScript MVC frameworks like the ones below have
become widely popular in recent years:

AngularJS

Ember.js 
Marionette.js

React

https://angularjs.org/
http://emberjs.com/
http://marionettejs.com/
https://facebook.github.io/react/


Architectural Styles

[ 25 ]

The Controller
The Controller layer is responsible for organizing and orchestrating the View and the
Model. It receives messages from the View layer and triggers Model behavior in order to
perform the desired action. Furthermore, it sends messages to the View in order to display
Model representations. Both operations are performed thanks to the Application layer,
which is responsible for orchestrating, organizing, and encapsulating Domain behavior.

In terms of a web application in PHP, the Controller usually comprehends a set of classes,
which, in order to fulfill their purpose, "speak HTTP." In other words, they receive an HTTP
request and return an HTTP response:

class PostsController
{
    public function updateAction(Request $request)
    {
        if (
            $request->request->has('submit') &&
            Validator::validate($request->request->post)
        ) {
            $postService = new PostService();

            try {
                $postService->createPost(
                    $request->request->get('title'),
                    $request->request->get('content')
                );

                $this->addFlash(
                    'notice',
                    'Post has been created successfully!'
                );
            } catch (Exception $e) {
                $this->addFlash(
                    'error',
                    'Unable to create the post!'
                );
            }
        }

        return $this->render('posts/update-result.html.twig');
    }
}



Architectural Styles

[ 26 ]

Inverting Dependencies: Hexagonal Architecture
Following the essential rule of Layered Architecture, there's a risk when implementing
Domain interfaces that contain infrastructural concerns.

As an example, with MVC, the PostRepository class from the previous example should
be placed in the Domain Model. However, placing infrastructural details right in the middle
of our Domain violates Separation of Concerns. This can be problematic; it's difficult to
avoid violating the essential rules of Layered Architecture, which leads to a style of code
that can become hard to test if the Domain layer is aware of technical implementations.

The Dependency Inversion Principle (DIP)
How can we fix this? As the Domain Model layer depends on concrete infrastructure
implementations, the Dependency Inversion Principle, or DIP, could be applied by
relocating the Infrastructure layer on top of the other three layers.

The Dependency Inversion Principle
High-level modules should not depend on low-level modules. Both should
depend on abstractions.
Abstractions should not depend on details. Details should depend on
abstractions. Robert C. Martin

By using the Dependency Inversion Principle, the architecture schema changes, and the
Infrastructure layer — which can be referred to as the low-level module — now depends on
the UI, the Application layer, and the Domain layer, which are the high-level modules. The
dependency has been inverted.

But what is Hexagonal Architecture, and how does it fit within all of this? Hexagonal
Architecture (also known as Ports and Adapters) was defined by Alistair Cockburn in his
book, Hexagonal Architecture. It depicts the application as a hexagon, where each side
represents a Port with one or more Adapters. A Port is a connector with a pluggable
Adapter that transforms an outside input to something the inside application can
understand. In terms of the DIP, a Port would be a high-level module, and an Adapter
would be a low-level module. Furthermore, if the application needs to emit a message to the
outside, it will also use a Port with an Adapter to send it and transform it into something
that the outside can understand. For this reason, Hexagonal Architecture brings up the
concept of symmetry in the application, and it's also the main reason why the schema of the
architecture changes. It's often represented as a hexagon because it no longer makes sense to
talk about a top layer or a bottom layer. Instead, Hexagonal Architecture talks mainly in
terms of the outside and the inside.

https://en.wikipedia.org/wiki/Dependency_inversion_principle
http://alistair.cockburn.us/Hexagonal+architecture


Architectural Styles

[ 27 ]

There are great videos on YouTube by Matthias Noback where he talks
about Hexagonal Architecture. You may want to take a look at one of
those for more detailed information.

Applying Hexagonal Architecture
Continuing with the blog example application, the first concept we need is a Port where the
outside world can talk to the application. For this case, we'll use an HTTP Port and its
corresponding Adapter. The outside will use the Port to send messages to the application.
The blog example was using a database to store the whole collection of blog posts, so in
order to allow the application to retrieve blog posts from the database, a Port is needed:

interface PostRepository
{
    public function byId(PostId $id);
    public function add(Post $post);
}

This interface exposes the Port that the application will retrieve information about blog
posts through, and it'll be located in the Domain Layer. Now an Adapter for this Port is
needed. The Adapter is in charge of defining the way in which the blog posts will be
retrieved using a specific technology:

class PDOPostRepository implements PostRepository
{
    private $db;

    public function __construct(PDO $db)
    {
        $this->db = $db;
    }

    public function byId(PostId $id)
    {
        $stm = $this->db->prepare(
            'SELECT * FROM posts WHERE id = ?'
        );

        $stm->execute([$id->id()]);

        return recreateFrom($stm->fetch());
    }

    public function add(Post $post)

https://www.youtube.com/watch?v=K1EJBmwg9EQ


Architectural Styles

[ 28 ]

    {
        $stm = $this->db->prepare(
            'INSERT INTO posts (title, content) VALUES (?, ?)'
        );

        $stm->execute([
            $post->title(),
            $post->content(),
        ]);
    }
}

Once we have the Port and its Adapter defined, the last step is to refactor the PostService
class so that it uses them. This can be easily achieved by using Dependency Injection:

class PostService
{
    private $postRepository;

    public function __construct(PostRepositor $postRepository)
    {
        $this->postRepository = $postRepository;
    }

    public function createPost($title, $content)
    {
        $post = Post::writeNewFrom($title, $content);

        $this->postRepository->add($post);

        return $post;
    }
}

This is just a simple example of Hexagonal Architecture. It's a flexible architecture that
promotes Separation of Concerns, like Layered Architecture. It also promotes symmetry,
due to having an inside application that communicates with the outside via ports. From
now on, this will be the foundational architecture used to build and explain CQRS and
Event Sourcing.

For more examples about this architecture, you can check out the Appendix, Hexagonal
Architecture with PHP. For a more detailed example, you should jump to the Chapter 11,
Application, which explains advanced topics like transactionality and other cross-cutting
concerns.

http://www.martinfowler.com/articles/injection.html


Architectural Styles

[ 29 ]

Command Query Responsibility Segregation
(CQRS)
Hexagonal Architecture is a good foundational architecture, but it has some limitations. For
example, complex UIs can require Aggregate information displayed in diverse forms
(Chapter 8, Aggregates), or they can require data obtained from multiple Aggregates. And
in this scenario, we could end up with a lot of finder methods inside the Repositories
(maybe as many as the UI views which exist within the application). Or, maybe we can
decide to move this complexity to the Application Services, using complex structures to
accumulate data from multiple Aggregates. Here's an example:

interface PostRepository
{
    public function save(Post $post);
    public function byId(PostId $id);
    public function all();
    public function byCategory(CategoryId $categoryId); 
    public function byTag(TagId $tagId);
    public function withComments(PostId $id);
    public function groupedByMonth();
    // ...
}

When these techniques are abused, the construction of the UI views can become really
painful. We should evaluate the tradeoff between making Application Services return
Domain Model instances and returning some kind of DTOs. With the latter option, we
avoid tight coupling between the Domain Model and Infrastructure code (web controllers,
CLI controllers, and so on).

Luckily, there's another approach. If the problem is having multiple and disparate views,
we can exclude them from the Domain Model and start treating them as a purely
infrastructural concern. This option is based on a design principle, the Command Query
Separation (CQS). This principle was defined by Bertrand Meyer, and, in turn, it gave birth
to a new architectural pattern named Command Query Responsibility Segregation
(CQRS), as defined by Greg Young.

Command Query Separation (CQS)  
Asking a question should not change the answer - Bertrand Meyer
This design principle states that every method should be either a
command that performs an action, or a query that returns data to the
caller, but not both, Wikipedia

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation


Architectural Styles

[ 30 ]

CQRS seeks an even more aggressive Separation of Concerns, splitting the Model in two:

The Write Model: Also known as the Command Model, it performs the writes
and takes responsibility for the true Domain behavior.
The Read Model: It takes responsibility of the reads within the application and
treats them as something that should be out of the Domain Model.

Every time someone triggers a command to the Write Model, this performs the write to the
desired data store. Additionally, it triggers the Read Model update, in order to display the
latest changes on the Read Model.

This strict separation causes another problem: Eventual Consistency. The consistency of the
Read Model is now subject to the commands performed by the Write Model. In other
words, the Read Model is eventually consistent. That is, every time the Write Model
performs a command, it will pull up a process that will be responsible for updating the
Read Model according to the last updates on the Write Model. There's a window of time
where the UI may present stale information to the user. In the web scenario, this happens
often, as we're somewhat limited by the current technologies.

Think about a caching system in front of a web application. Every time the database is
updated with new information, the data on the cache layer may potentially be stale, so
every time it gets updated, there should be a process that updates the cache system. Cache
systems are eventually consistent.

These kinds of processes, speaking in CQRS terminology, are called Write Model
Projections, or just Projections. We project the Write Model onto the Read Model. This
process can be synchronous or asynchronous, depending on your needs, and it can be done
thanks to another useful tactical design pattern — Chapter Domain Events — which will be
explained in detail later on in the book. The basis of the Write Model projections is to gather
all the published Domain Events and update the Read Model with all the information
coming from the events.



Architectural Styles

[ 31 ]

The Write Model
This is the true holder of Domain behavior. Continuing with our example, the Repository
interface would be simplified to the following:

interface PostRepository
{
    public function save(Post $post); 
    public function byId(PostId $id);
}

Now the PostRepository has been freed from all the read concerns except one: The
byId function which is responsible for loading the Aggregate by its ID so that we can
operate on it. And once this is done, all the query methods are also stripped down from the
Post model, leaving it only with command methods. This means we'll effectively get rid of
all the getter methods and any other methods exposing information about the Post
Aggregate. Instead, Domain Events will be published in order to be able to trigger Write
Model projections by subscribing to them:

class AggregateRoot
{
    private $recordedEvents = [];

    protected function recordApplyAndPublishThat(
        DomainEvent $domainEvent
    ) {
        $this->recordThat($domainEvent);
        $this->applyThat($domainEvent);
        $this->publishThat($domainEvent);
    }

    protected function recordThat(DomainEvent $domainEvent)
    {
        $this->recordedEvents[] = $domainEvent;
    }

    protected function applyThat(DomainEvent $domainEvent)
    {
        $modifier = 'apply' . get_class($domainEvent);

        $this->$modifier($domainEvent);
    }

    protected function publishThat(DomainEvent $domainEvent)
    {
        DomainEventPublisher::getInstance()->publish($domainEvent);
    }



Architectural Styles

[ 32 ]

    public function recordedEvents()
    {
        return $this->recordedEvents;
    }

    public function clearEvents()
    {
        $this->recordedEvents = [];
    }
}

class Post extends AggregateRoot
{
    private $id;
    private $title;
    private $content;
    private $published = false;
    private $categories;

    private function __construct(PostId $id)
    {
        $this->id = $id;
        $this->categories = new Collection();
    }

    public static function writeNewFrom($title, $content)
    {
        $postId = PostId::create();

        $post = new static($postId);

        $post->recordApplyAndPublishThat(
            new PostWasCreated($postId, $title, $content)
        );
    }

    public function publish()
    {
        $this->recordApplyAndPublishThat(
            new PostWasPublished($this->id)
        );
    }

    public function categorizeIn(CategoryId $categoryId)
    {
        $this->recordApplyAndPublishThat(
            new PostWasCategorized($this->id, $categoryId)
        );



Architectural Styles

[ 33 ]

    }

    public function changeContentFor($newContent)
    {
        $this->recordApplyAndPublishThat(
            new PostContentWasChanged($this->id, $newContent)
        );
    }

    public function changeTitleFor($newTitle)
    {
        $this->recordApplyAndPublishThat(
            new PostTitleWasChanged($this->id, $newTitle)
        );
    }
}

All actions that trigger a state change are implemented via Domain Events. For each
Domain Event published, there's an apply method responsible for reflecting the state
change:

class Post extends AggregateRoot
{
    // ...

    protected function applyPostWasCreated(
        PostWasCreated $event
    ) {
        $this->id = $event->id();
        $this->title = $event->title();
        $this->content = $event->content();
    }

    protected function applyPostWasPublished(
        PostWasPublished $event
    ) {
        $this->published = true;
    }

    protected function applyPostWasCategorized(
        PostWasCategorized $event
    ) {
        $this->categories->add($event->categoryId());
    }

    protected function applyPostContentWasChanged(
        PostContentWasChanged $event
    ) {



Architectural Styles

[ 34 ]

        $this->content = $event->content();
    }

    protected function applyPostTitleWasChanged(
        PostTitleWasChanged $event
    ) {
        $this->title = $event->title();
    }
}

The Read Model
The Read Model, also known as the Query Model, is a pure denormalized data model lifted
from Domain concerns. In fact, with CQRS, all the read concerns are treated as reporting
processes, an infrastructure concern. In general, when using CQRS, the Read Model is
subject to the needs of the UI and how complex the views compounding the UI are. In a
situation where the Read Model is defined in terms of relational databases, the simplest
approach would be to set one-to-one relationships between database tables and UI views.
These database tables and UI views will be updated using Write Model projections
triggered from the Domain Events published by the write side:

-- Definition of a UI view of a single post with its comments
CREATE TABLE single_post_with_comments (
    id INTEGER NOT NULL,
    post_id INTEGER NOT NULL,
    post_title VARCHAR(100) NOT NULL,
    post_content TEXT NOT NULL,
    post_created_at DATETIME NOT NULL,
    comment_content TEXT NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

-- Set up some data
INSERT INTO single_post_with_comments VALUES
    (1, 1, "Layered" , "Some content", NOW(), "A comment"),
    (2, 1, "Layered" , "Some content", NOW(), "The comment"),
    (3, 2, "Hexagonal" , "Some content", NOW(), "No comment"),
    (4, 2, "Hexagonal", "Some content", NOW(), "All comments"),
    (5, 3, "CQRS", "Some content", NOW(), "This comment"),
    (6, 3, "CQRS", "Some content", NOW(), "That comment");

-- Query it
SELECT * FROM single_post_with_comments WHERE post_id = 1;



Architectural Styles

[ 35 ]

An important feature of this architectural style is that the Read Model should be completely
disposable, since the true state of the application is handled by the Write Model. This means
the Read Model can be removed and recreated when needed, using Write Model
projections.

Here we can see some examples of possible views within a blog application:

SELECT * FROM
    posts_grouped_by_month_and_year
ORDER BY month DESC,year ASC;

SELECT * FROM
    posts_by_tags
WHERE tag = "ddd";

SELECT * FROM
    posts_by_author
WHERE author_id = 1;

It's important to point out that CQRS doesn't constrain the definition and implementation of
the Read Model to a relational database. It depends exclusively on the needs of the
application being built. It could be a relational database, a document-oriented database, a
key-value store, or whatever best suits the needs of your application. Following the blog
post application, we'll use Elasticsearch — a document-oriented database — to implement
a Read Model:

class PostsController
{
    public function listAction()
    {
        $client = new ElasticsearchClientBuilder::create()->build();

        $response = $client-> search([
            'index' => 'blog-engine',
            'type' => 'posts',
            'body' => [
                'sort' => [
                    'created_at' => ['order' => 'desc']
                ]
            ]
        ]);

        return [
            'posts' => $response
        ];
    }
}

https://en.wikipedia.org/wiki/Elasticsearch


Architectural Styles

[ 36 ]

The Read Model code has been drastically simplified to a single query against an
Elasticsearch index. 

This reveals that the Read Model doesn't really need an object-relational mapper, as this
might be overkill. However, the Write Model might benefit from the use of an object-
relational mapper, as this would allow you to organize and structure the Read Model
according to the needs of the application.

Synchronizing the Write Model with the Read Model
Here comes the tricky part. How do we synchronize the Read Model with the Write Model?
We already said we would do it by using Domain Events captured in a Write Model
transaction. For each type of Domain Event captured, a specific projection will be executed.
So a one-to-one relationship between Domain Events and projections will be set.

Let's have a look at an example of configuring projections so that we can get a better idea.
First of all, we need to define a skeleton for the projections:

interface Projection
{
    public function listensTo();
    public function project($event);
}

So defining an Elasticsearch projection for a PostWasCreated event would be as
simple as this:

namespace Infrastructure\Projection\Elasticsearch;

use Elasticsearch\Client;
use PostWasCreated;

class PostWasCreatedProjection implements Projection
{
    private $client;

    public function __construct(Client $client)
    {
        $this->client = $client;
    }

    public function listensTo()
    {
        return PostWasCreated::class;
    }



Architectural Styles

[ 37 ]

    public function project($event)
    {
        $this->client->index([
            'index' => 'posts',
            'type' => 'post',
            'id' => $event->getPostId(),
            'body' => [
                'content' => $event->getPostContent(),
                // ...
            ]
        ]);
    }
}

The Projector implementation is a kind of specialized Domain Event listener. The main
difference between that and the default Domain Event listener is that the Projector reacts to
a group of Domain Events instead of only one:

namespace Infrastructure\Projection;

class Projector
{
    private $projections = [];

    public function register(array $projections)
    {
        foreach ($projections as $projection) {
            $this->projections[$projection->eventType()] = $projection;
        }
    }

    public function project( array $events)
    {
        foreach ($events as $event) {
            if (isset($this->projections[get_class($event)])) {
                $this->projections[get_class($event)]
                    ->project($event);
            }
        }
    }
}



Architectural Styles

[ 38 ]

The following code shows how the flow between the projector and the events would
appear:

$client = new ElasticsearchClientBuilder::create()->build();

$projector = new Projector();
$projector->register([
    new Infrastructure\Projection\Elasticsearch\
        PostWasCreatedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostWasPublishedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostWasCategorizedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostContentWasChangedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostTitleWasChangedProjection($client),
]);

$events = [
    new PostWasCreated(/* ... */),
    new PostWasPublished(/* ... */),
    new PostWasCategorized(/* ... */),
    new PostContentWasChanged(/* ... */),
    new PostTitleWasChanged(/* ... */),
];

$projector->project($event);

This code is kind of synchronous, but the process can be asynchronous if needed. And you
could make your customers aware of this out-of-sync data by placing some alerts in the
view layer.

For the next example, we'll use the amqplib PHP extension in combination with ReactPHP:

// Connect to an AMQP broker
$cnn = new AMQPConnection();
$cnn->connect();

// Create a channel
$ch = new AMQPChannel($cnn);

// Declare a new exchange
$ex = new AMQPExchange($ch);
$ex->setName('events');

$ex->declare();

https://github.com/GeniusesOfSymfony/ReactAMQP


Architectural Styles

[ 39 ]

// Create an event loop
$loop = ReactEventLoopFactory::create();

// Create a producer that will send any waiting messages every half a
second
$producer = new Gos\Component\React\AMQPProducer($ex, $loop, 0.5);

$serializer = JMS\Serializer\SerializerBuilder::create()->build();

$projector = new AsyncProjector($producer, $serializer);

$events = [
    new PostWasCreated(/* ... */),
    new PostWasPublished(/* ... */),
    new PostWasCategorized(/* ... */),
    new PostContentWasChanged(/* ... */),
    new PostTitleWasChanged(/* ... */),
];

$projector->project($event);

For this to work, we need an asynchronous projector. Here's a naive implementation of that:

namespace Infrastructure\Projection;

use Gos\Component\React\AMQPProducer;
use JMS\Serializer\Serializer;

class AsyncProjector
{
    private $producer;
    private $serializer;

    public function __construct(
        Producer $producer,
        Serializer $serializer
    ) {
        $this->producer = $producer;
        $this->serializer = $serializer;
    }

    public function project(array $events)
    {
        foreach ($events as $event) {
            $this->producer->publish(
                $this->serializer->serialize(
                    $event, 'json'
                )



Architectural Styles

[ 40 ]

            );
        }
    }
}

And the event consumer on the RabbitMQ exchange would look something like this:

// Connect to an AMQP broker
$cnn = new AMQPConnection();
$cnn-> connect();

// Create a channel
$ch = new AMQPChannel($cnn);

// Create a new queue
$queue = new AMQPQueue($ch);
$queue->setName('events');
$queue->declare();

// Create an event loop
$loop = React\EventLoop\Factory::create();

$serializer = JMS\Serializer\SerializerBuilder::create()->build();

$client = new Elasticsearch\ClientBuilder::create()->build();

$projector = new Projector();
$projector->register([
    new Infrastructure\Projection\Elasticsearch\
        PostWasCreatedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostWasPublishedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostWasCategorizedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostContentWasChangedProjection($client),
    new Infrastructure\Projection\Elasticsearch\
        PostTitleWasChangedProjection($client),
]);

// Create a consumer
$consumer = new Gos\Component\ReactAMQP\Consumer($queue, $loop, 0.5, 10);

// Check for messages every half a second and consume up to 10 at a time.
$consumer->on(
    'consume',
    function ($envelope, $queue) use ($projector, $serializer) {
        $event = $serializer->unserialize($envelope->getBody(), 'json');



Architectural Styles

[ 41 ]

        $projector->project($event);
    }
);

$loop->run();

From now on, it could be as simple as making all the needed Repositories consume an
instance of the projector and then making them invoke the projection process:

class DoctrinePostRepository implements PostRepository
{
    private $em;
    private $projector;

    public function __construct(EntityManager $em, Projector $projector)
    {
        $this->em = $em;
        $this->projector = $projector;
    }

    public function save(Post $post)
    {
        $this->em->transactional(
            function (EntityManager $em) use ($post)
            {
                $em->persist($post);

                foreach ($post->recordedEvents() as $event) {
                    $em->persist($event);
                }
            }
        );

        $this->projector->project($post->recordedEvents());
    }

    public function byId(PostId $id)
    {
        return $this->em->find($id);
    }
}



Architectural Styles

[ 42 ]

The Post instance and the recorded events are triggered and persisted in the same
transaction. This ensures that no events are lost, as we'll project them to the Read Model if
the transaction is successful. As a result, no inconsistencies will exist between the Write
Model and the Read Model.

To ORM or Not To ORM  
One of the most common questions when implementing CQRS is if an
Object-Relational Mapper (ORM) is really needed. We strongly believe
that using an ORM for the Write Model is perfectly fine and has all of the
advantages of using a tool, which will help us save a lot of work in case
we use a relational database. But we shouldn't forget that we still need to
persist and retrieve the Write Model's state in a relational database.

Event Sourcing
CQRS is a powerful and flexible architecture. There's an added benefit to it in regard to
gathering and saving the Domain Events (which occurred during an Aggregate operation),
giving you a high-level degree of detail of what's going on within your Domain. Domain
Events are one of the key tactical patterns because of their significance within the Domain,
as they describe past occurrences.

Be careful with recording too many events
An ever-growing number of events is a smell. It might reveal an addiction
to event recording at the Domain, most likely incentivized by the business.
As a rule of thumb, remember to keep it simple.

By using CQRS, we've been able to record all the relevant events that occurred in the
Domain Layer. The state of the Domain Model can be represented by reproducing the
Domain Events we previously recorded. We just need a tool for storing all those events in a
consistent way. We need an event store.



Architectural Styles

[ 43 ]

The fundamental idea behind Event Sourcing is to express the state of
Aggregates as a linear sequence of events

With CQRS, we partially achieved the following: The Post entity alters its state by using
Domain Events, but it's persisted, as explained already, thereby mapping the object to a
database table.

Event Sourcing takes this a step further. If we were using a database table to store the state
of all the blog posts, another to store the state of all the blog post comments, and so on,
using Event Sourcing would allow us to use a single database table: A single append —
 only database table that would store all the Domain Events published by all the Aggregates
within the Domain Model. Yes, you read that correctly. A single database table.

With this model in mind, tools like object-relational mappers are no longer needed. The
only tool needed would be a simple database abstraction layer by which events can be
appended:

interface EventSourcedAggregateRoot
{
    public static function reconstitute(EventStream $events);
}

class Post extends AggregateRoot implements EventSourcedAggregateRoot
{
    public static function reconstitute(EventStream $history)
    {
        $post = new static($history->getAggregateId());

        foreach ($events as $event) {
            $post->applyThat($event);
        }

        return $post;
    }
}



Architectural Styles

[ 44 ]

Now the Post Aggregate has a method which, when given a set of events (or, in other
words, an event stream), is able to replay the state step by step until it reaches the current
state, all before saving. The next step would be building an adapter of the PostRepository
port that will fetch all the published events from the Post Aggregate and append them to
the data store where all the events are appended. This is what we call an event store:

class EventStorePostRepository implements PostRepository
{
    private $eventStore;
    private $projector;

    public function __construct($eventStore, $projector)
    {
        $this->eventStore = $eventStore;
        $this->projector = $projector;
    }

    public function save(Post $post)
    {
        $events = $post->recordedEvents();

        $this->eventStore->append(new EventStream(
            $post->id(),
            $events)
        );
        $post->clearEvents();

        $this->projector->project($events);
    }
}

This is how the implementation of the PostRepository looks when we use an event store
to save all the events published by the Post Aggregate. Now we need a way to restore an
Aggregate from its events history. A reconstitute method implemented by the Post
Aggregate and used to rebuild a blog post state from triggered events comes in handy:

class EventStorePostRepository implements PostRepository
{
    public function byId(PostId $id)
    {
        return Post::reconstitute(
            $this->eventStore->getEventsFor($id)
        );
    }
}



Architectural Styles

[ 45 ]

The event store is the workhorse that carries out all the responsibility in regard to saving
and restoring event streams. Its public API is composed of two simple methods: They
are append and getEventsFrom. The former appends an event stream to the event store,
and the latter loads event streams to allow Aggregate rebuilding.

We could use a key-value implementation to store all events:

class EventStore
{
    private $redis;
    private $serializer;

    public function __construct($redis, $serializer)
    {
        $this->redis = $redis;
        $this->serializer = $serializer;
    }

    public function append(EventStream $eventstream)
    {
        foreach ($eventstream as $event) {
            $data = $this->serializer->serialize(
                $event, 'json'
            );

            $date = (new DateTimeImmutable())->format('YmdHis');

            $this->redis->rpush(
                'events:' . $event->getAggregateId(),
                $this->serializer->serialize([
                    'type' => get_class($event),
                    'created_on' => $date,
                    'data' => $data
                ],'json')
            );
        }
    }

    public function getEventsFor($id)
    {
        $serializedEvents = $this->redis->lrange('events:' . $id, 0, -1);

        $eventStream = [];
        foreach($serializedEvents as $serializedEvent){
            $eventData = $this->serializerdeserialize(
                $serializedEvent,
                'array',



Architectural Styles

[ 46 ]

                'json'
           );

            $eventStream[] = $this->serializer->deserialize(
                $eventData['data'],
                $eventData['type'],
                'json'
            );
        }

        return new EventStream($id, $eventStream);
    }
}

This event store implementation is built upon Redis, a widely used key-value store. The
events are appended in a list using the prefix events: In addition, before persisting the
events, we extract some metadata like the event class or the creation date, as it will come in
handy later.

Obviously, in terms of performance, it's expensive for an Aggregate to go over its full event
history to reach its final state all of the time. This is especially the case when an event
stream has hundreds or even thousands of events. The best way to overcome this situation
is to take a snapshot from the Aggregate and replay only the events in the event stream that
occurred after the snapshot was taken. A snapshot is just a simple serialized version of the
Aggregate state at any given moment. It can be based on the number of events of the
Aggregate's event stream, or it can be time based. With the first approach, a snapshot will
be taken every n triggered events (every 50, 100, or 200 events, for example). With the
second approach, a snapshot will be taken every n seconds.

To follow the example, we'll use the first way of snapshotting. In the event's metadata, we
store an additional field, the version, from which we'll start replaying the Aggregate
history:

class SnapshotRepository
{
    public function byId($id)
    {
        $key = 'snapshots:' . $id;
        $metadata = $this->serializer->unserialize(
            $this->redis->get($key)
        );

        if (null === $metadata) {
            return;
        }

http://redis.io


Architectural Styles

[ 47 ]

        return new Snapshot(
            $metadata['version'],
            $this->serializer->unserialize(
                $metadata['snapshot']['data'],
                $metadata['snapshot']['type'],
                'json'
            )
        );
    }

    public function save($id, Snapshot $snapshot)
    {
        $key = 'snapshots:' . $id;
        $aggregate = $snapshot->aggregate();

        $snapshot = [
            'version' => $snapshot->version(),
            'snapshot' => [
                'type' => get_class($aggregate),
                'data' => $this->serializer->serialize(
                    $aggregate, 'json'
                )
            ]
        ];

        $this->redis->set($key, $snapshot);
    }
}

And now we need to refactor the EventStore class so that it starts using the
SnapshotRepository to load the Aggregate with acceptable performance times:

class EventStorePostRepository implements PostRepository
{
    public function byId(PostId $id)
    {
        $snapshot = $this->snapshotRepository->byId($id);

        if (null === $snapshot) {
            return Post::reconstitute(
                $this->eventStore->getEventsFrom($id)
            );
        }

        $post = $snapshot->aggregate();

        $post->replay(
            $this->eventStore->fromVersion($id, $snapshot->version())



Architectural Styles

[ 48 ]

        );

        return $post;
    }
}

We just need to take Aggregate snapshots periodically. We could do this synchronously or
asynchronously by a process responsible for monitoring the event store. The following code
is a simple example demonstrating the implementation of Aggregate snapshotting:

class EventStorePostRepository implements PostRepository
{
    public function save(Post $post)
    {
        $id = $post->id();
        $events = $post->recordedEvents();
        $post->clearEvents();
        $this->eventStore->append(new EventStream($id, $events));
        $countOfEvents =$this->eventStore->countEventsFor($id);
        $version = $countOfEvents / 100;

        if (!$this->snapshotRepository->has($post->id(), $version)) {
            $this->snapshotRepository->save(
                $id,
                new Snapshot(
                    $post, $version
                )
            );
        }

        $this->projector->project($events);
    }
}

To ORM or Not To ORM 
It's clear from the use case of this architectural style that using an ORM
just to persist / fetch events would be overkill. Even if we use a relational
database for storing them, we only need to persist / fetch events from the
data store.



Architectural Styles

[ 49 ]

Wrap-Up
As there are plenty of options for architectural styles, you may have gotten a bit confused in
this chapter. You'll have to consider the tradeoffs for each one of them in order to choose
wisely. One thing is clear: the Big Ball of Mud approach is not an option, as the code will rot
pretty fast. Layered Architecture is a better option, but it presents some disadvantages, like
tight coupling between layers. Arguably, the most balanced option would be Hexagonal
Architecture, as it can be used as a foundational base architecture, and it promotes a high-
level degree of decoupling and symmetry between the inside and outside of the application.
This is what we recommend for most scenarios.

We've also seen CQRS and Event Sourcing as relatively flexible architectures that will help
you in fighting serious complexity. CQRS and Event Sourcing both have their places, but
don't let the coolness factor distract you from the value they provide. As they both come with
some overhead, you should have a technical reason for justifying their use. These
architectural styles are indeed really useful, and the heuristics to start using them can be
discovered in the number of finders on the Repositories for CQRS and the volume of
triggered events for Event Sourcing. If the number of finder methods starts growing and
Repositories become difficult to maintain, then it's time to consider the use of CQRS, in
order to split read and write concerns. And after that, if the volume of events on each
Aggregate operation tends to grow and the business is interested in more granular
information, then an option to consider is whether a move toward Event Sourcing might
pay off.

Extracted from a paper by Brian Foote and Joseph Yoder:
A BIG BALL OF MUD is haphazardly structured, sprawling, sloppy, duct-tape
and bailing wire, spaghetti code jungle.

http://www.laputan.org/mud/mud.html#BigBallOfMud


3
Value Objects

By using the self keyword, we don't The Value Objects are a fundamental building block
of Domain-Driven Design, and they're used to model concepts of your Ubiquitous
Language in code. A Value Object is not just a thing in your Domain — it measures,
quantifies, or describes something. Value Objects can be seen as small, simple objects —
such as money or a date range — whose equality is not based on identity, but instead on the
content held.

For example, a product price could be modeled using a Value Object. In this case, it's not
representing a thing, but rather a value that allows us to measure how much Money a
product is worth. The memory footprint for these objects is trivial to determine (calculated
by their constituent parts) and there's very little overhead. As a result, new instance creation
is favored over reference reuse, even when being used to represent the same value. Equality
is then checked based on the comparability of the fields of both instances.

Definition
Ward Cunningham defines a Value Object as:

A measure or description of something. Examples of Value Objects are things like
numbers, dates, monies and strings. Usually, they are small Objects which are
used quite widely. Their identity is based on their state rather than on their Object
identity. This way, you can have multiple copies of the same conceptual Value
Object. Every $5 note has its own identity (thanks to its serial number), but the
cash economy relies on every $5 note having the same Value as every other $5
note.

http://c2.com/cgi/wiki?ValueObject


Value Objects

[ 51 ]

Martin Fowler defines a Value Object as:

A small Object such as a Money or the date range object. Their key property is that
they follow value semantics rather than reference semantics. You can usually tell
them because their notion of equality isn't based on identity, instead two Value
Objects are equal if all their fields are equal. Although all fields are equal, you
don't need to compare all fields if a subset is unique — for example currency
codes for currency objects are enough to test equality. A general heuristic is that
Value Objects should be entirely immutable. If you want to change a Value Object
you should replace the object with a new one and not be allowed to update the
values of the value object itself — updatable value objects lead to aliasing
problems.

Examples of Value Objects are numbers, text strings, dates, times, a person's full name
(composed of first name, middle name, last name, and title), currencies, colors, phone
numbers, and postal addresses.

Exercise
Try to locate more examples of potential Value Objects in your current
Domain.

Value Object vs. Entity
Consider the following examples from Wikipedia, in order to better understand the
difference between Value Objects and Entities:

Value Object: When people exchange dollar bills, they generally do not
distinguish between each unique bill; they only are concerned about the face
value of the dollar bill. In this context, dollar bills are Value Objects. However,
the Federal Reserve may be concerned about each unique bill; in this context each
bill would be an entity.
Entity: Most airlines distinguish each seat uniquely on every flight. Each seat is
an entity in this context. However, Southwest Airlines, EasyJet and Ryanair do
not distinguish between every seat; all seats are the same. In this context, a seat is
actually a Value Object.

http://martinfowler.com/bliki/ValueObject.html
http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD


Value Objects

[ 52 ]

Exercise
Think about the concept of an address (street, number, zip code, and so
on). What is a possible context where an address could be modeled as an
Entity and not as a Value Object? Discuss your findings with a peer.

Currency and Money Example
The Currency and Money Value Objects are probably the most used examples for
explaining Value Objects, thanks to the Money pattern. This design pattern provides a
solution for modeling a problem that avoids a floating-point rounding issue, which in turn
allows for deterministic calculations to be performed.

In the real world, a currency describes monetary units in the same way that meters and
yards describe distance units. Each currency is represented with a three-letter uppercase
ISO code:

class Currency
{
    private $isoCode;

    public function __construct($anIsoCode)
    {
        $this->setIsoCode($anIsoCode);
    }

    private function setIsoCode($anIsoCode)
    {
        if (!preg_match('/^[A-Z]{3}$/', $anIsoCode)) {
           throw new InvalidArgumentException();
        }

        $this->isoCode = $anIsoCode;
    }

    public function isoCode()
    {
        return $this->isoCode;
    }
}

One of the main goals of Value Objects is also the holy grail of Object-Oriented design:
encapsulation. By following this pattern, you'll end up with a dedicated location to put all
the validation, comparison logic, and behavior for a given concept.

http://martinfowler.com/eaaCatalog/money.html


Value Objects

[ 53 ]

Extra Validations for Currency
In the previous code example, we can build a Currency with an AAA
Currency ISO code. That isn't valid at all. Write a more specific rule that
will check if the ISO Code is valid. A full list of valid currency ISO codes
can be found here. If you need help, take a look at the Money packagist
library.

Money is used to measure a specific amount of currency. It's modeled using an amount and
a currency. Amount, in the case of the Money pattern, is implemented using an integer
representation of the Currency's least-valuable fraction — For example   in the case of USD
or EUR, cents.

As a bonus, you might also notice that we're using self encapsulation to set the ISO code,
which centralizes changes in the Value Object itself:

class Money
{
    private $amount; 
    private $currency;

    public function __construct($anAmount, Currency $aCurrency)
    {
        $this->setAmount($anAmount);
        $this->setCurrency($aCurrency);
    }

    private function setAmount($anAmount)
    {
        $this->amount = (int) $anAmount;
    }

    private function setCurrency(Currency $aCurrency)
    {
        $this->currency = $aCurrency;
    }

    public function amount()
    {
        return $this->amount;
    }

    public function currency()
    {
        return $this->currency;
    }
}

http://www.xe.com/iso4217.php
https://github.com/moneyphp/money
http://martinfowler.com/bliki/SelfEncapsulation.html


Value Objects

[ 54 ]

Now that you know the formal definition of Value Objects, let's dive deeper into some of
the powerful features they offer.

Characteristics
While modeling an Ubiquitous Language concept in code, you should always favor Value
Objects over Entities. Value Objects are easier to create, test, use, and maintain.

Keeping this in mind, you can determine whether the concept in question can be modeled
as a Value Object if:

It measures, quantifies, or describes a thing in the Domain
It can be kept immutable
It models a conceptual whole by composing related attributes as an integral unit
It can be compared with others through value equality
It is completely replaceable when the measurement or description changes
It supplies its collaborators with side-effect-free behavior

Measures, Quantifies, or Describes
As discussed before, a Value Object should not be considered just a thing in your Domain.
As a value, it measures, quantifies, or describes a concept in the Domain.

In our example, the Currency object describes what type of Money it is. The Money object
measures or quantifies units of a given currency.

Immutability
This is one of the most important aspects to grasp. Object values shouldn't be able to be
altered over their lifetime. Because of this immutability, Value Objects are easy to reason
and test and are free of undesired/unexpected side effects. As such, Value Objects should be
created through their constructors. In order to build one, you usually pass the required
primitive types or other Value Objects through this constructor.

Value Objects are always in a valid state; that's why we create them in a single atomic step.
Empty constructors with multiple setters and getters move the creation responsibility to the
client, resulting in the Anemic Domain Model, which is considered an anti-pattern.

http://www.martinfowler.com/bliki/AnemicDomainModel.html


Value Objects

[ 55 ]

It's also good to point out that it's not recommended to hold references to Entities in your
Value Objects. Entities are mutable, and holding references to them could lead to
undesirable side effects occurring in the Value Object.

In languages with method overloading, such as Java, you can create multiple constructors
with the same name. Each of these constructors are provided with different options to build
the same type of resulting object. In PHP, we're able to provide a similar capability by way
of factory methods. These specific factory methods are also known as semantic
constructors. The main goal of fromMoney is to provide more contextual meaning than the
plain constructor. More radical approaches propose to make the __construct method
private and build every instance using a semantic constructor.

In our Money object, we could add some useful factory methods like the following:

class Money
{
    // ...
    public static function fromMoney(Money $aMoney)
    {
        return new self(
            $aMoney->amount(),
            $aMoney->currency()
        );
    }

    public static function ofCurrency(Currency $aCurrency)
    {
        return new self(0, $aCurrency);
    }
}

By using the self keyword, we don't couple the code with the class name. As such, a
change to the class name or namespace won't affect these factory methods. This small
implementation detail helps when refactoring the code at a later date.

static vs. self
Using static over self can result in undesirable issues when a Value Object
inherits from another Value Object.

Due to this immutability, we must consider how to handle mutable actions that are
common place in a stateful context. If we require a state change, we now have to return a
brand new Value Object representation with this change. If we want to increase the amount
of, for example, a Money Value Object, we're required to instead return a new Money
instance with the desired modifications.

http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern


Value Objects

[ 56 ]

Fortunately, it's relatively simple to abide by this rule, as shown in the example below:

class Money
{
   // ...
    public function increaseAmountBy($anAmount)
    {
        return new self(
            $this->amount() + $anAmount,
            $this->currency()
        );
    }
}

The Money object returned by increaseAmountBy is different from the Money client object
that received the method call. This can be observed in the example comparability checks
below:

$aMoney = new Money(100, new Currency('USD')); 
$otherMoney = $aMoney->increaseAmountBy(100);

var_dump($aMoney === otherMoney); // bool(false)

$aMoney = $aMoney->increaseAmountBy(100);
var_dump($aMoney === $otherMoney); // bool(false)

Conceptual Whole
So why not just implement something similar to the following example, avoiding the need
for a new Value Object class altogether?

class Product
{
    private id; 
    private name;
    /**
     * @var int
     */
    private $amount;
    /**
     * @var string
     */
    private $currency;

    // ...
}



Value Objects

[ 57 ]

This approach has some noticeable flaws, if say, for example, you want to validate the ISO.
It doesn't really make sense for the Product to be responsible for the Currency's ISO
validation (thus violating the Single Responsibility Principle). This is highlighted even more
so if you want to reuse the accompanying logic in other parts of your Domain (to abide by
the DRY principle).

With these factors in mind, this use case is a perfect candidate for being abstracted out into
a Value Object. Using this abstraction not only gives you the opportunity to group related
properties together, but it also allows you to create higher-order concepts and a more
concrete Ubiquitous Language.

Exercise
Discuss with a peer whether or not an email could be considered a Value
Object. Does the context it's used in matter? 

Value Equality
As discussed at the beginning of the chapter, two Value Objects are equal if the content they
measure, quantify, or describe is the same.

For example, imagine two Money objects representing 1 USD. Can we consider them equal?
In the real world, are two bills of 1 USD valued the same? Of course they are. Directing our
attention back to the code, the Value Objects in question refer to separate instances of
Money. However, they both represent the same value, which makes them equal.

In regards to PHP, it's commonplace to compare two Value Objects using the == operator.
Examining the PHP Documentation definition of the operator highlights an interesting
behavior:

When using the comparison operator ==, object variables are compared in a
simple manner, namely: Two object instances are equal if they have the same
attributes and values, and are instances of the same class.

This behavior works in agreement with our formal definition of a Value Object. However,
as an exact class match predicate is present, you should be wary when handling subtyped
Value Objects.

Keeping this in mind, the even stricter === operator doesn't help us, unfortunately:

When using the identity operator ===, object variables are identical if and only if
they refer to the same instance of the same class.

http://php.net/manual/en/language.oop5.object-comparison.php


Value Objects

[ 58 ]

The following example should help confirm these subtle differences:

$a = new Currency('USD'); 
$b = new Currency('USD');

var_dump($a == $b); // bool(true)
var_dump($a === $b); // bool(false)

$c = new Currency('EUR');

var_dump($a == $c); // bool(false)
var_dump($a === $c); // bool(false)

A solution is to implement a conventional equals method in each Value Object. This method
is tasked with checking the type and equality of its composite attributes. Abstract data type
comparability is easy to implement using the built-in type hinting in PHP. You can also use
the get_class() function to aid in the comparability check if necessary.

The language, however, is unable to decipher what equality truly means in your Domain
concept, meaning it's your responsibility to provide the answer. In order to compare
the Currency objects, we just need to confirm that both their associated ISO codes are the
same. The === operator does the job pretty well in this case:

class Currency
{
    // ...
    public function equals(Currency $currency)
    {
        return $currency->isoCode() === $this->isoCode();
    }
}

Because Money objects use Currency objects, the equals method needs to perform this
comparability check, along with comparing the amounts:

class Money
{
    // ...
    public function equals(Money $money)
    {
        return
            $money->currency()->equals($this->currency()) &&
            $money->amount() === $this->amount();
    }
}



Value Objects

[ 59 ]

Replaceability
Consider a Product Entity that contains a Money Value Object used to quantify its price.
Additionally, consider two Product Entities with an identical price — for example 100
USD. This scenario could be modeled using  the two individual Money objects or two
references pointing to a single Value Object.

Sharing the same Value Object can be risky; if one is altered, both will reflect the change.
This behavior can be considered an unexpected side effect. For example, if Carlos was hired
on February 20, and we know that Christian was also hired on the same day, we may set
Christian's hire date to be the same instance as Carlos's. If Carlos then changes the month of
his hire date to May, Christian's hire date changes too. Whether it's correct or not, it's not
what people expect.

Due to the problems highlighted in this example, when holding a reference to a Value
Object, it's recommended to replace the object as a whole rather than modifying its value:

$this−>price = new Money(100, new Currency('USD')); 
//...
$this->price = $this->price->increaseAmountBy(200);

This kind of behavior is similar to how basic types such as strings work in PHP. Consider
the function strtolower. It returns a new string rather than modifying the original one.
No reference is used; instead, a new value is returned.

Side-Effect-Free Behavior
If we want to include some additional behavior — like an add method — in our Money
class, it feels natural to check that the input fits any preconditions and maintains any
invariance. In our case, we only wish to add monies with the same currency:

class Money
{
    // ...
    public function add(Money $money)
    {
        if ($money->currency() !== $this->currency()) {
            throw new InvalidArgumentException();
        }

        $this->amount += $money->amount();
    }
}



Value Objects

[ 60 ]

If the two currencies don't match, an exception is raised. Otherwise, the amounts are added.
However, this code has some undesirable pitfalls. Now imagine we have a mysterious
method call to otherMethod in our code:

class Banking
{
    public function doSomething()
    {
        $aMoney = new Money(100, new Currency('USD'));

        $this->otherMethod($aMoney);//mysterious call
        // ...
    }
}

Everything is fine until, for some reason, we start seeing unexpected results when we're
returning or finished with otherMethod. Suddenly, $aMoney no longer contains 100 USD.
What happened? And what happens if otherMethod internally uses our previously
defined add method? Maybe you're unaware that add mutates the state of the Money
instance. This is what we call a side effect. You must avoid generating side effects. You
must not mutate your arguments. If you do, the developer using your objects may
experience strange behaviors. They'll complain, and they'll be correct.

So how can we fix this? Simple — by making sure that the Value Object remains immutable,
we avoid this kind of unexpected problem. An easy solution could be returning a new
instance for every potentially mutable operation, which the add method does:

class Money
{
    // ...
    public function add(Money $money)
    {
        if (!$money->currency()->equals($this->currency())) {
            throw new \InvalidArgumentException();
        }

        return new self(
            $money->amount() + $this->amount(),
            $this->currency()
        );
    }
}



Value Objects

[ 61 ]

With this simple change, immutability is guaranteed. Each time two instances of Money are
added together, a new resulting instance is returned. Other classes can perform any number
of changes without affecting the original copy. Code free of side effects is easy to
understand, easy to test, and less error prone.

Basic Types
Consider the following code snippet:

$a = 10; 
$b = 10;
var_dump($a == $b);
// bool(true)
var_dump($a === $b);
// bool(true)
$a = 20; 
var_dump($a);
// integer(20)
$a = $a + 30;
var_dump($a);
// integer(50); 

Although $a and $b are different variables stored in different memory locations, when
compared, they're the same. They hold the same value, so we consider them equal. You can
change the value of $a from 10 to 20 at any time that you want, making the new value 20
and eliminating the 10. You can replace integer values as much as you want without
consideration of the previous value because you're not modifying it; you're just replacing it.
If you apply any operation — such as addition (That is. $a + $b) — to these variables, you
get another new value that can be assigned to another variable or a previously defined one.
When you pass $a to another function, except when explicitly passed by reference, you're
passing a value. It doesn't matter if $a gets modified within that function, because in your
current code, you'll still have the original copy. Value Objects behave as basic types.

Testing Value Objects
Value Objects are tested in the same way normal objects are. However, the immutability
and side-effect-free behavior must be tested too. A solution is to create a copy of the Value
Object you're testing before performing any modifications. Assert both are equal using the
implemented equality check. Perform the actions you want to test and assert the results.
Finally, assert that the original object and copy are still equal.



Value Objects

[ 62 ]

Let's put this into practice and test the side-effect-free implementation of our add method in
the Money class:

class MoneyTest extends FrameworkTestCase
{
    /**
     * @test
     */
    public function copiedMoneyShouldRepresentSameValue()
    {
        $aMoney = new Money(100, new Currency('USD'));

        $copiedMoney = Money::fromMoney($aMoney);

        $this->assertTrue($aMoney->equals($copiedMoney));
    }

    /**
     * @test
     */
    public function originalMoneyShouldNotBeModifiedOnAddition()
    {
        $aMoney = new Money(100, new Currency('USD'));

        $aMoney->add(new Money(20, new Currency('USD')));

        $this->assertEquals(100, $aMoney->amount());
    }

    /**
     * @test
     */
    public function moniesShouldBeAdded()
    {
        $aMoney = new Money(100, new Currency('USD'));

        $newMoney = $aMoney->add(new Money(20, new Currency('USD')));

        $this->assertEquals(120, $newMoney->amount());
    }

    // ...
}



Value Objects

[ 63 ]

Persisting Value Objects
Value Objects are not persisted on their own; they're typically persisted within an
Aggregate. Value Objects shouldn't be persisted as complete records, though that's an 
option in some cases. Instead, it's best to use Embedded Value or Serialize LOB patterns.
Both patterns can be used when persisting your objects with an open source ORM such as
Doctrine, or with a bespoke ORM. As Value Objects are small, Embedded Value is usually
the best choice because it provides an easy way to query Entities by any of the attributes the
Value Object has. However, if querying by those fields isn't important to you, serialize
strategies can be very easy to implement.

Consider the following Product Entity with string id, name, and price (Money Value
Objects) attributes. We've intentionally decided to simplify this example, with the id being a
string and not a Value Object:

 class Product
 {
     private $productId;
     private $name;
     private $price;

     public function __construct(
         $aProductId,
         $aName,
         Money $aPrice
     ) {
         $this->setProductId($aProductId);
         $this->setName($aName);
         $this->setPrice($aPrice);
     }

     // ...
 }

Assuming you have a Chapter 10, Repositories for persisting Product Entities, an
implementation to create and persist a new Product could look like this:

$product = new Product(
    $productRepository->nextIdentity(),
    'Domain-Driven Design in PHP',
    new Money(999, new Currency('USD'))
);
$productRepository−>persist(product);



Value Objects

[ 64 ]

Now let's look at both the ad hoc ORM and the Doctrine implementations that could be
used to persist a Product Entity containing Value Objects. We'll highlight the application of
the Embedded Value and Serialized LOB patterns, along with the differences between
persisting a single Value Object and a collection of them.

Why Doctrine?
The Doctrine is a great ORM. It solves 80 percent of the requirements a
PHP application faces. It has a great community. With a correctly tuned
setup, it can perform the same or even better than a bespoke ORM
(without losing maintainability). We recommend using Doctrine in most
cases when dealing with Entities and business logic. It will save you a lot
of time and headaches.

Persisting Single Value Objects
Many different options are available for persisting a single Value Object. These range from
using Serialize LOB or Embedded Value as mapping strategies, to using an Ad Hoc ORM or
an open source alternative, such as Doctrine. We consider an Ad Hoc ORM to be a custom-
built ORM that your company may have developed in order to persist Entities in a
database. In our scenario, the Ad Hoc ORM code is going to be implemented using the
DBAL library. According to the official documentation, The Doctrine Database
Abstraction & Access Layer (DBAL) offers a lightweight and thin runtime layer around a
PDO-like API and a lot of additional, horizontal features like database schema introspection
and manipulation through an OO API.

Embedded Value with an Ad Hoc ORM
If we're dealing with an Ad Hoc ORM using the Embedded Value pattern, we need to
create a field in the Entity table for each attribute in the Value Object. In this case, two extra
columns are needed when persisting a Product Entity — one for the amount of the Value
Object, and one for its currency ISO code:

CREATE TABLE `products` (
    id INT NOT NULL,
    name VARCHAR( 255) NOT NULL,
    price_amount INT NOT NULL,
    price_currency VARCHAR( 3) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

http://www.doctrine-project.org/projects/orm.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/introduction.html


Value Objects

[ 65 ]

For persisting the Entity in the database, our Chapter 10, Repositories has to map each of the
fields of the Entity and the ones from the Money Value Object.

If you're using an Ad hoc ORM Repository based on DBAL—let's call it
DbalProductRepository—you must take care of creating the INSERT statement, binding
the parameters, and executing the statement:

class DbalProductRepository
    extends DbalRepository
    implements ProductRepository
{
     public function add(Product $aProduct)
     {
         $sql = 'INSERT INTO products VALUES (?, ?, ?, ?)' ;
         $stmt = $this->connection()->prepare($sql);
         $stmt->bindValue(1, $aProduct->id());
         $stmt->bindValue(2, $aProduct->name());
         $stmt->bindValue(3, $aProduct->price()->amount());
         $stmt->bindValue(4, $aProduct
             ->price()->currency()->isoCode());
         $stmt->execute();

       // ...
     }
 }

After executing this snippet of code to create a Products Entity and persist it into the
database, each column is filled with the desired information:

mysql> select * from products \G
*************************** 1. row ***************************
id: 1
name: Domain-Driven Design in PHP
price_amount: 999
price_currency: USD
1 row in set (0.00 sec)

As you can see, you can map your Value Objects and query parameters in an Ad hoc
manner in order to persist your Value Objects. However, everything is not as easy as it
seems. Let's try to fetch the persisted Product with its associated Money Value Object. A
common approach would be to execute a SELECT statement and return a new Entity:

class DbalProductRepository
    extends DbalRepository
    implements ProductRepository
{
    public function productOfId($anId)



Value Objects

[ 66 ]

    {
        $sql = 'SELECT * FROM products WHERE id = ?';
        $stmt = $this->connection()->prepare($sql);
        $stmt->bindValue(1, $anId);
        $res = $stmt->execute();
        // ...

        return new Product(
            $row['id'],
            $row['name'],
            new Money(
                $row['price_amount'],
                new Currency($row['price_currency'])
            )
        );
    }
}

There are some benefits to this approach. First, you can easily read, step by step, how the
persistence and subsequent creations occur. Second, you can perform queries based on any
of the attributes of the Value Object. Finally, the space required to persist the Entity is just
what is required — no more and no less.

However, using the ad hoc ORM approach has its drawbacks. As explained in the Chapter
6, Domain-Events, Entities (in Aggregate form) should fire an Event in the constructor if
your Domain is interested in the Aggregate's creation. If you use the new operator, you'll be
firing the Event as many times as the Aggregate is fetched from the database.

This is one of the reasons why Doctrine uses internal proxies and serialize and
unserialize methods to reconstitute an object with its attributes in a specific state without
using its constructor. An Entity should only be created with the new operator once in its
lifetime:

Constructors  
Constructors don't need to include a parameter for each attribute in the
object. Think about a blog post. A constructor may need an id and a title;
however, internally it can also be setting its status attribute to draft. When
publishing the post, a publish method should be called in order to alter its
status accordingly and set a published date.

If your intention is still to roll out your own ORM, be ready to solve some fundamental
problems such as Events, different constructors, Value Objects, lazy load relations, and so
on. That's why we recommend giving Doctrine a try for Domain-Driven Design
applications.



Value Objects

[ 67 ]

Besides, in this instance, you need to create a DbalProduct Entity that extends from the
Product Entity and is able to reconstitute the Entity from the database without using the
new operator, instead using a static factory method.

Embedded Value (Embeddables) with Doctrine >= 2.5.*
The latest stable Doctrine release is currently version 2.5 and it comes with support for
mapping Value Objects, thereby removing the need to do this yourself as in Doctrine 2.4.
Since December 2015, Doctrine also has support for nested embeddables. The support is not
100 percent, but it's high enough to give it a try. In case it doesn't work for your scenario,
take a look at the next section. For official documentation, check the Doctrine Embeddables
reference. This option, if implemented correctly, is definitely the one we recommend most.
It would be the simplest, most elegant solution, that also provides search support in your
DQL queries.

Because the Product, Money, and Currency classes have already been shown, the only
thing remaining is to show the Doctrine mapping files:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity
        name="Product"
        table="product">
        <id
            name="id"
            column="id"
            type="string"
            length="255">
            <generator strategy="NONE">
            </generator>
        </id>

        <field
            name="name"
            type="string"
            length="255"
        />

        <embedded

http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html
http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html


Value Objects

[ 68 ]

            name="price"
            class="Ddd\Domain\Model\Money"
        />
    </entity>
</doctrine-mapping>

In the product mapping, we're defining price as an instance variable that will hold a
Money instance. At the same time, Money is designed with an amount and a Currency
instance:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <embeddable
        name="Ddd\Domain\Model\Money">

        <field
            name="amount"
            type="integer"
        />
        <embedded
            name="currency"
            class="Ddd\Domain\Model\Currency"
        />
    </embeddable>
</doctrine-mapping>

Finally, it's time to show the Doctrine mapping for our Currency Value Object:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <embeddable
        name="Ddd\Domain\Model\Currency">

        <field
            name="iso"
            type="string"



Value Objects

[ 69 ]

            length="3"
        />
    </embeddable>
</doctrine-mapping>

As you can see, the above code has a standard embeddable definition with just one string
field that holds the ISO code. This approach is the easiest way to use embeddables and is
much more effective. By default, Doctrine names your columns by prefixing them using the
Value Object name. You can change this behavior to meet your needs by changing the
column-prefix attribute in the XML notation.

Embedded Value with Doctrine <= 2.4.*
If you're still stuck in Doctrine 2.4, you may wonder what an acceptable solution for using
Embedded Values with Doctrine < 2.5 is. We need to now surrogate all the Value Object
attributes in the Product Entity, which means creating new artificial attributes that will
hold the information of the Value Object. With this in place, we can map all those new
attributes using Doctrine. Let's see what impact this has on the Product Entity:

class Product
{
    private $productId; 
    private $name;
    private $price;
    private $surrogateCurrencyIsoCode;
    private $surrogateAmount;

    public function __construct($aProductId, $aName, Money $aPrice)
    {
        $this->setProductId($aProductId);
        $this->setName($aName);
        $this->setPrice($aPrice);
    }

    private function setPrice(Money $aMoney)
    {
        $this->price = $aMoney;
        $this->surrogateAmount = $aMoney->amount();
        $this->surrogateCurrencyIsoCode =
            $aMoney->currency()->isoCode();
    }

    private function price()
    {
        if (null === $this->price) {



Value Objects

[ 70 ]

            $this->price = new Money(
                $this->surrogateAmount,
                new Currency($this->surrogateCurrency)
            );
        }
        return $this->price;
    }

    // ...
}

As you can see, there are two new attributes: one for the amount, and another for the ISO
code of the currency. We've also updated the setPrice method in order to keep attribute
consistency when setting it. On top of this, we updated the price getter in order to return
the Money Value Object built from the new fields. Let's see how the corresponding XML
Doctrine mapping should be changed:

 <?xml version="1.0" encoding="utf-8"?>
 <doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity
        name="Product"
        table="product">

        <id
            name="id"
            column="id"
            type="string"
            length="255" >
            <generator strategy="NONE">
            </generator>
        </id>

       <field
           name="name"
           type="string"
           length="255"
       />

       <field
           name="surrogateAmount"
           type="integer"



Value Objects

[ 71 ]

           column="price_amount"
       />
       <field
           name="surrogateCurrencyIsoCode"
           type="string"
           column="price_currency"
       />
    </entity>
</doctrine-mapping>

Surrogate Attributes
These two new fields don't strictly belong to the Domain, as they don't
refer to Infrastructure details. Rather, they're a necessity due to the lack of
embeddable support in Doctrine. There are alternatives that can push
these two attributes outside the pure Domain; however, this approach is
simpler, easier, and, as a tradeoff, acceptable. There's another use of
surrogate attributes in this book; you can find it in  the sub-section
Surrogate Identity of the section Identity Operation of Chapter 4, Entities.

If we wanted to push these two attributes outside of the Domain, this could be achieved
through the use of an Abstract Factory. First, we need to create a new Entity,
DoctrineProduct, in our Infrastructure folder. This Entity will extend from Product
Entity. All surrogate fields will be placed in the new class, and methods such as price or
setPrice should be reimplemented. We'll map Doctrine to use the new DoctrineProduct
as opposed to the Product Entity.

Now we're able to fetch Entities from the database, but what about creating a new
Product? At some point, we're required to call new Product, but because we need to deal
with DoctrineProduct and we don't want our Application Services to know about
Infrastructure details, we'll need to use Factories to create Product Entities. So, in every
instance where Entity creation occurs with new, you'll instead call createProduct on
ProductFactory.

There could be many additional classes required to avoid placing the surrogate attributes in
the original Entity. As such, it's our recommendation to surrogate all the Value Objects to
the same Entity, though this admittedly leads to a less pure solution.

http://en.wikipedia.org/wiki/Abstract_factory_pattern


Value Objects

[ 72 ]

Serialized LOB and Ad Hoc ORM
If the addition of searching capabilities to the Value Objects attributes is not important,
there's another pattern that can be considered: the Serialized LOB. This pattern works by
serializing the whole Value Object into a string format that can easily be persisted and
fetched. The most significant difference between this solution and the embedded alternative
is that in the latter option, the persistence footprint requirements are reduced to a single
column:

CREATE TABLE ` products` (
    id INT NOT NULL,
    name VARCHAR( 255) NOT NULL,
    price TEXT NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

In order to persist the Product Entities using this approach, a change in the
DbalProductRepository is required. The Money Value Object must be serialized into a
string before persisting the final Entity:

class DbalProductRepository extends DbalRepository implements
ProductRepository
{
    public function add(Product $aProduct)
    {
        $sql = 'INSERT INTO products VALUES (?, ?, ?)';
        $stmt = this->connection()->prepare(sql); 
        $stmt->bindValue(1, aProduct−>id()); 
        $stmt->bindValue(2, aProduct−>name()); 
        $stmt->bindValue(3, $this−>serialize($aProduct->price()));

        // ...
    }

    private function serialize($object)
    {
        return serialize($object);
    }
}

Let's see how our Product is now represented in the database. The table column price is a
TEXT type column that contains a serialization of a Money object representing 9.99 USD:

mysql > select * from products \G
*************************** 1.row***************************
id   : 1
name : Domain-Driven Design in PHP



Value Objects

[ 73 ]

price : O:22:"Ddd\Domain\Model\Money":2:{s:30:"Ddd\Domain\Model\\
Money amount";i :
999;s:32:"Ddd\Domain\Model\Money currency";O : 25:"Ddd\Domain\Model\\
Currency":1:{\
s:34:" Ddd\Domain\Model\Currency isoCode";s:3:"USD";}}1 row in set(\ 0.00
sec)

This approach does the job. However, it's not recommended due to problems occurring
when refactoring classes in your code. Could you imagine the problems if we decided to
rename our Money class? Could you imagine the changes that would be required in our
database representation when moving the Money class from one namespace to another?
Another tradeoff, as explained before, is the lack of querying capabilities. It doesn't matter
whether you use Doctrine or not; writing a query to get the products cheaper than, say, 200
USD is almost impossible while using a serialization strategy.

The querying issue can only be solved by using Embedded Values. However, the
serialization refactoring problems can be fixed using a specialized library for handling
serialization processes.

Improved Serialization with JMS Serializer
The serialize/unserialize native PHP strategies have a problem when dealing with class and
namespace refactoring. One alternative is to use your own serialization mechanism —  for
example, concatenating the amount, a one character separator such as |, and the currency
ISO code. However, there's another favored approach: using an open source serializer
library such as JMS Serializer. Let's see an example of applying it when serializing a
Money object:

$myMoney = new Money(999, new Currency('USD'));

$serializer = JMS\Serializer\SerializerBuilder::create()->build();
$jsonData = $serializer−>serialize(myMoney, 'json');

In order to unserialize the object, the process is straightforward:

$serializer = JMS\Serializer\SerializerBuilder::create()->build();
// ...
$myMoney = $serializer−>deserialize(jsonData, 'Ddd', 'json');

http://jmsyst.com/libs/serializer


Value Objects

[ 74 ]

With this example, you can refactor your Money class without having to update your
database. JMS Serializer can be used in many different scenarios — for example, when
working with REST APIs. An important feature is the ability to specify which attributes of
an object should be omitted in the serialization process — for example, a password.

Check out the Mapping Reference and the Cookbook for more information. JMS Serializer is
a must in any Domain-Driven Design project.

Serialized LOB with Doctrine
In Doctrine, there are different ways of serializing objects in order to eventually persist
them.

Doctrine Object Mapping Type
Doctrine has support for the Serialize LOB pattern. There are plenty of predefined mapping
types you can use in order to match Entity attributes with database columns or even tables.
One of those mappings is the object type, which maps an SQL CLOB to a PHP object using
serialize() and unserialize().

According to the Doctrine DBAL 2 Documentation, object type:

Maps and converts object data based on PHP serialization. If you need to store an
exact representation of your object data, you should consider using this type as it
uses serialization to represent an exact copy of your object as string in the
database. Values retrieved from the database are always converted to PHP's object
type using unserialization or null if no data is present.

This type will always be mapped to the database vendor's text type internally as
there is no way of storing a PHP object representation natively in the database.
Furthermore this type requires a SQL column comment hint so that it can be
reverse engineered from the database. Doctrine cannot correctly map back this
type correctly using vendors that do not support column comments, and will
instead fall back to the text type instead.

Because the built-in text type of PostgreSQL does not support NULL bytes, the
object type will result in unserialization errors. A workaround to this problem is
to serialize()/unserialize() and base64_encode()/base64_decode()
PHP objects and store them into a text field manually.

http://jmsyst.com/libs/serializer/master/reference/xml_reference
http://jmsyst.com/libs/serializer/master/cookbook
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#object


Value Objects

[ 75 ]

Let's look at a possible XML mapping for the Product Entity by using the object type:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity
        name="Product"
        table="products">

        <id
            name="id"
            column="id"
            type="string"
            length="255">
            <generator strategy="NONE">
            </generator>
        </id>
        <field
            name="name"
            type="string"
            length="255"
        />
        <field
            name="price"
            type="object"
        />
    </entity>
</doctrine-mapping>

The key addition is type="object", which tells Doctrine that we're going to be using an
object mapping. Let's see how we could create and persist a Product Entity using Doctrine:

// ...
$em−>persist($product);
$em−>flush($product);

Let's check that if we now fetch our Product Entity from the database, it's returned in an
expected state:

// ...
$repository = $em->getRepository('Ddd\\Domain\\Model\\Product');
$item = $repository->find(1);
var_dump($item);



Value Objects

[ 76 ]

/*
class Ddd\Domain\Model\Product#177 (3) {
    private $productId => int(1)
    private $name => string(41) "Domain-Driven Design in PHP"
    private $money => class Ddd\Domain\Model\Money#174 (2) {
        private $amount => string(3) "100"
        private $currency => class Ddd\Domain\Model\Currency#175 (1){
            private $isoCode => string(3) "USD"
        }
    }
}
* /

Last but not least, the Doctrine DBAL 2 Documentation states that:

Object types are compared by reference, not by value. Doctrine updates this value
if the reference changes and therefore behaves as if these objects are immutable
value objects.

This approach suffers from the same refactoring issues as the Ad hoc ORM did. The object
mapping type is internally using serialize/unserialize. What about instead using our
own serialization?

Doctrine Custom Types
Another option is to handle the Value Object persistence using a Doctrine Custom Type. A
Custom Type adds a new mapping type to Doctrine — one that describes a custom
transformation between an Entity field and the database representation, in order to persist
the former.

As the Doctrine DBAL 2 Documentation explains:

Just redefining how database types are mapped to all the existing Doctrine types
is not at all that useful. You can define your own Doctrine Mapping Types by
extending Doctrine\DBAL\Types\Type. You are required to implement 4
different methods to get this working.

With the object type, the serialization step includes information, such as the class, that
makes it quite difficult to safely refactor our code.

Let's try to improve on this solution. Think about a custom serialization process that could
solve the problem.

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types


Value Objects

[ 77 ]

One such way could be to persist the Money Value Object as a string in the database
encoded in amount|isoCode format:

use Ddd\Domain\Model\Currency;
use Ddd\Domain\Model\Money;
use Doctrine\DBAL\Types\TextType;
use Doctrine\DBAL\Platforms\AbstractPlatform;

class MoneyType extends TextType
{
    const MONEY = 'money';

    public function convertToPHPValue(
        $value,
        AbstractPlatform $platform
    ) {
        $value = parent::convertToPHPValue($value, $platform);
        $value = explode('|', $value);
        return new Money(
            $value[0],
            new Currency($value[1])
        );
    }

    public function convertToDatabaseValue(
        $value,
        AbstractPlatform $platform
    ) {
        return implode(
           '|',
           [
               $value->amount(),
               $value->currency()->isoCode()
           ]
        );
    }

    public function getName()
    {
        return self::MONEY;
    }
}

Using Doctrine, you're required to register all Custom Types. It's common to use an
EntityManagerFactory that centralizes this EntityManager creation.



Value Objects

[ 78 ]

Alternatively, you could perform this step by bootstrapping your application:

use Doctrine\DBAL\Types\Type;
use Doctrine\ORM\EntityManager;
use Doctrine\ORM\Tools\Setup;

class EntityManagerFactory
{
    public function build()
    {
        Type::addType(
            'money',
            'Ddd\Infrastructure\Persistence\Doctrine\Type\MoneyType'
        );
        return EntityManager::create(
            [
                'driver' => 'pdo_mysql',
                'user' => 'root',
                'password' => '',
                'dbname' => 'ddd',
            ],
            Setup::createXMLMetadataConfiguration(
                [__DIR__.'/config'],
                true
            )
        );
    }
}

Now we need to specify in the mapping that we want to use our Custom Type:

<?xml version = "1.0" encoding = "utf-8"?>
<doctrine-mapping>
    <entity
        name = "Product"
        table = "product">

        <!-- ... -->
        <field
            name = "price"
            type = "money"
        />
    </entity>
</doctrine-mapping>



Value Objects

[ 79 ]

Why Use XML Mapping? 
Thanks to the XSD schema validation in the headers of the XML mapping
file, many Integrated Development Environment (IDEs) setups provide
auto-complete functionality for all the elements and attributes present in
the mapping definition. However, in other parts of the book, we use
YAML to show a different syntax.

Let's check the database to see how the price was persisted using this approach:

mysql> select * from products \G
*************************** 1. row***************************
id: 1
name: Domain-Driven Design in PHP
price: 999|USD
1 row in set (0.00 sec)

This approach is an improvement on the one before in terms of future refactoring.
However, searching capabilities remain limited due to the format of the column. With the
Doctrine Custom types, you can improve the situation a little, but it's still not the best
option for building your DQL queries. See Doctrine Custom Mapping Types for more
information.

Time to Discuss
Think about and discuss with a peer how would you create a Doctrine
Custom Type using JMS to serialize and unserialize a Value Object.

Persisting a Collection of Value Objects
Imagine that we'd now like to add a collection of prices to be persisted to our Product
Entity. These prices could represent the different prices the product has borne throughout
its lifetime or the product price in different currencies. This could be named
HistoricalPrice, as shown below:

class HistoricalProduct extends Product
{
    /**
     * @var Money[]
     */
    protected $prices;

    public function __construct(
        $aProductId,
        $aName,

http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html


Value Objects

[ 80 ]

        Money $aPrice,
        array $somePrices
    ){
        parent::__construct($aProductId, $aName, $aPrice);
        $this->setPrices($somePrices);
    }

    private function setPrices(array $somePrices)
    {
        $this->prices = $somePrices;
    }

    public function prices()
    {
        return $this->prices;
    }
}

HistoricalProduct extends from Product, so it inherits the same behavior, plus the
price collection functionality.

As in the previous sections, serialization is a plausible approach if you don't care about
querying capabilities. However, Embedded Values are a possibility if we know exactly how
many prices we want to persist. But what happens if we want to persist an undetermined
collection of historical prices?

Collection Serialized into a Single Column
Serializing a collection of Value Objects into a single column is most likely the easiest
solution. Everything that was previously explained in the section about persisting a single
Value Object applies in this situation. With Doctrine, you can use an Object or Custom Type
— with some additional considerations to bear in mind: Value Objects should be small in
size, but if you wish to persist a large collection, be sure to consider the maximum column
length and the maximum row width that your database engine can handle.

Exercise
Come up with both Doctrine Object Type and Doctrine Custom Type
implementation strategies for persisting a Product with different prices.



Value Objects

[ 81 ]

Collection Backed by a Join Table
In case you want to persist and query an Entity by its related Value Objects, you have the
choice to persist the Value Objects as Entities. In terms of the Domain, those objects would
still be Value Objects, but we'll need to give them an id and set them up with a one-to-
many/one-to-one relation with the owner, a real Entity. To summarize, your ORM handles
the collection of Value Objects as Entities, but in your Domain, they're still treated as Value
Objects.

The main idea behind the Join Table strategy is to create a table that connects the owner
Entity and its Value Objects. Let's see a database representation:

CREATE TABLE ` historical_products` (
    `id` char( 36) COLLATE utf8mb4_unicode_ci NOT NULL,
    `name` varchar( 255) COLLATE utf8mb4_unicode_ci NOT NULL,
    `price_amount` int( 11 ) NOT NULL,
    `price_currency` char( 3) COLLATE utf8mb4_unicode_ci NOT NULL,
     PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

The historical_products table will look the same as products. Remember that
HistoricalProduct extends Product Entity in order to easily show how to deal with
persisting a collection. A new prices table is now required in order to persist all the different
Money Value Objects that a Product Entity can handle:

CREATE TABLE `prices`(
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `amount` int(11) NOT NULL,
    `currency` char(3) COLLATE utf8mb4_unicode_ci NOT NULL,
    PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Finally, a table that relates products and prices is needed:

CREATE TABLE `products_prices` (
    `product_id` char( 36) COLLATE utf8mb4_unicode_ci NOT NULL,
    `price_id` int( 11 ) NOT NULL,
    PRIMARY KEY (`product_id`, `price_id`),
    UNIQUE KEY `UNIQ_62F8E673D614C7E7` (`price_id`),
    KEY `IDX_62F8E6734584665A` (`product_id`),
    CONSTRAINT `FK_62F8E6734584665A` FOREIGN KEY (`product_id`)
        REFERENCES `historical_products` (`id`),
    CONSTRAINT `FK_62F8E673D614C7E7` FOREIGN KEY (`price_id`)
        REFERENCES `prices`(`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;



Value Objects

[ 82 ]

Collection Backed by a Join Table with Doctrine
Doctrine requires that all database Entities have a unique identity. Because we want to
persist Money Value Objects, we need to then add an artificial identity so Doctrine can
handle its persistence. There are two options: including the surrogate identity in the Money
Value Object, or placing it in an extended class.

The issue with the first option is that the new identity is only required due to the Database
persistence layer. This identity is not part of the Domain.

An issue with the second option is the amount of alterations required in order to avoid this
so-called boundary leak. With a class extension, creating new instances of the Money Value
Object class from any Domain Object isn't recommended, as it would break the Inversion
Principle. The solution is to again create a Money Factory that would need to be passed into
Application Services and any other Domain Objects.

In this scenario, we recommend using the first option. Let's review the changes required to
implement it in the Money Value Object:

class Money
{
    private $amount; 
    private $currency;
    private $surrogateId;
    private $surrogateCurrencyIsoCode;

    public function __construct($amount, Currency $currency)
    {
        $this->setAmount($amount);
        $this->setCurrency($currency);
    }

    private function setAmount($amount)
    {
        $this->amount = $amount;
    }

    private function setCurrency(Currency $currency)
    {
        $this->currency = $currency;
        $this->surrogateCurrencyIsoCode =
            $currency->isoCode();
    }



Value Objects

[ 83 ]

    public function currency()
    {
       if (null === $this->currency) {
           $this->currency = new Currency(
               $this->surrogateCurrencyIsoCode
           );
       }
       return $this->currency;
    }

    public function amount()
    {
        return $this->amount;
    }

    public function equals(Money $aMoney)
    {
        return
            $this->amount() === $aMoney->amount() &&
            $this->currency()->equals($this->currency());
    }
}

As seen above, two new attributes have been added. The first one, surrogateId, is not
used by our Domain, but it's required for the persistence Infrastructure to persist this Value
Object as an Entity in our Database. The second one, surrogateCurrencyIsoCode, holds
the ISO code for the currency. Using these new attributes, it's really easy to map our Value
Object with Doctrine.

The Money mapping is quite straightforward:

<?xml version = "1.0" encoding = "utf-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity
        name="Ddd\Domain\Model\Money"
        table="prices">

        <id
            name="surrogateId"
            type="integer"



Value Objects

[ 84 ]

            column="id">
            <generator
                strategy="AUTO">
            </generator>

        </id>
        <field
            name="amount"
            type="integer"
            column="amount"
        />
        <field
            name="surrogateCurrencyIsoCode"
            type="string"
            column="currency"
        />
    </entity>
</doctrine-mapping>

Using Doctrine, the HistoricalProduct Entity would have following mapping:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity
        name="Ddd\Domain\Model\HistoricalProduct"
        table="historical_products"
        repository-class="
Ddd\Infrastructure\Domain\Model\DoctrineHistoricalProductRepository
        ">
        <many-to-many
            field="prices"
            target-entity="Ddd\Domain\Model\Money">

            <cascade>
                <cascade-all/>
            </cascade>

            <join-table
                name="products_prices">
                <join-columns>
                    <join-column
                        name="product_id"



Value Objects

[ 85 ]

                        referenced-column-name="id"
                    />
                </join-columns>
                <inverse-join-columns>
                    <join-column
                        name="price_id"
                        referenced-column-name="id"
                        unique="true"
                    />
                </inverse-join-columns>
            </join-table>
        </many-to-many>
    </entity>
</doctrine-mapping>

Collection Backed by a Join Table with an Ad Hoc ORM
It's possible to do the same with an Ad hoc ORM, where Cascade INSERTS and JOIN
queries are required. It's important to be careful about how the removal of Value Objects is
handled, in order to not leave orphan  the Money Value Objects.

Exercise
Think up a solution for DbalHistoricalRepository that would handle
the persist method.

Collection Backed by a Database Entity
Database Entity is the same solution as Join Table, with the addition of the Value Object
that's only managed by the owner Entity. In the current scenario, consider that the Money
Value Object is only used by the HistoricalProduct Entity; a Join Table would be overly
complex. So the same result could be achieved using a one-to-many database relation.

Exercise
Think of the mapping required between HistoricalProduct and Money
if a Database Entity approach is used.



Value Objects

[ 86 ]

NoSQL
What about NoSQL mechanisms such as Redis, MongoDB, or CouchDB? Unfortunately, you
can't escape these problems. In order to persist an Aggregate using Redis, you need to
serialize it into a string before setting the value. If you use PHP serialize/unserialize
methods, you'll face namespace or class name refactoring issues again. If you choose to
serialize in a custom way (JSON, custom string, and so on.), you'll be required to again
rebuild the Value Object during Redis retrieval.

PostgreSQL JSONB and MySQL JSON Type
If our database engine would allow us to not only use the Serialized LOB strategy but also
search based on its value, we would have the best of both approaches. Well, good news:
now you can do this. As of PostgreSQL version 9.4, support for JSONB has been added. Value
Objects can be persisted as JSON serializations and subsequently queried within this JSON
serialization.

MySQL has done the same. As of MySQL 5.7.8, MySQL supports a native JSON data type
that enables efficient access to data in JSON (JavaScript Object Notation) documents.
According to the MySQL 5.7 Reference Manual, the JSON data type provides these
advantages over storing JSON-format strings in a string column:

Automatic validation of JSON documents stored in JSON columns. Invalid
documents produce an error.
Optimized storage format. JSON documents stored in JSON columns are
converted to an internal format that permits quick read access to document
elements. When the server later must read a JSON value stored in this binary
format, the value need not be parsed from a text representation. The binary
format is structured to enable the server to look up subobjects or nested values
directly by key or array index without reading all values before or after them in
the document.

If Relational Databases add support for document and nested document searches with high
performance and with all the benefits of an Atomicity, Consistency, Isolation,
Durability(ACID) philosophy, it could save a lot of complexity in many projects.

http://www.postgresql.org/docs/9.4/static/functions-json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html


Value Objects

[ 87 ]

Security
Another interesting detail of modeling your Domain concepts using Value Objects is
regarding its security benefits. Consider an application within the context of selling flight
tickets. If you deal with International Air Transport Association airport codes, also known
as IATA codes, you can decide to use a string or model the concept using a Value Object. If
you choose to go with the string, think about all the places where you'll be checking that the
string is a valid IATA code. What's the chance you forget somewhere important? On the
other hand, think about trying to instantiate new IATA("BCN'; DROP TABLE users;--
"). If you centralize the guards in the constructor and then pass an IATA Value Object into
your model, avoiding SQL Injections or similar attacks gets easier.

If you want to know more about the security side of Domain-Driven Design, you can follow
Dan Bergh Johnsson or read his blog.

Wrap-Up
Using Value Objects for modeling concepts in your Domain that measure, quantify, or
describe is highly recommended. As shown, Value Objects are easy to create, maintain, and
test. In order to handle persistence within a Domain-Driven Design application, using an
ORM is a must. However, in order to persist Value Objects using Doctrine, the preferred
way is using embeddables. In case you're stuck in version 2.4, there are two options: adding
the Value Object fields directly into your Entity and mapping them (less elegant, but easier),
or extending your Entities (far more elegant, but more complex).

https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code
https://twitter.com/danbjson
http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security


4
Entities

We've talked about the benefits of trying to first model everything in the Domain as a Value
Object. But when modeling the Domain, there will probably be situations where you'll find
that some concept in the Ubiquitous Language demands a thread of Identity.

Introduction
Clear examples of objects requiring an Identity include:

A person. A person always has an Identity and it's always the same in terms of
their name or identification card.
An order in an e-commerce system. In such a context, every new order created
has its own Identity and it's the same over time.

These concepts have an Identity that endures over time. No matter how many times data in
the concepts changes, their Identities remain the same. That's what makes them Entities and
not Value Objects. In terms of PHP implementation, they would be plain old classes. For
example, consider the following in the case of a person:

namespace Ddd\Identity\Domain\Model;

class Person
{
    private $identificationNumber;
    private $firstName;
    private $lastName;

    public function __construct(
        $anIdentificationNumber, $aFirstName, $aLastName
    ) {
        $this->identificationNumber = $anIdentificationNumber;



Entities

[ 89 ]

        $this->firstName = $aFirstName;
        $this->lastName  = $aLastName;
    }

    public function identificationNumber()
    {
        return $this->identificationNumber;
    }

    public function firstName()
    {
        return $this->firstName;
    }

    public function lastName()
    {
        return $this->lastName;
    }
 }

Or, consider the following in the case of an order:

namespace Ddd\Billing\Domain\Model\Order;

class Order
{
    private $id;
    private $amount;
    private $firstName;
    private $lastName;

    public function __construct(
        $anId, Amount $amount, $aFirstName, $aLastName
    ) {
        $this->id = $anId;
        $this->amount = $amount;
        $this->firstName = $aFirstName;
        $this->lastName = $aLastName;
    }

    public function id()
    {
        return $this->id;
    }

    public function firstName()
    {
        return $this->firstName;



Entities

[ 90 ]

    }

    public function lastName()
    {
        return $this->lastName;
    }
}

Objects Vs. Primitive Types
Most of the time, the Identity of an Entity is represented as a primitive type — usually a
string or an integer. But using a Value Object to represent it has more advantages:

Value Objects are immutable, so they can't be modified.
Value Objects are complex types that can have custom behaviors, something
which primitive types can't have. Take, as an example, the equality operation.
With Value Objects, equality operations can be modeled and encapsulated in
their own classes, making concepts go from implicit to explicit.

Let's see a possible implementation for OrderId, the Order Identity that has evolved into a
Value Object:

namespace Ddd\Billing\Domain\Model;

class OrderId
{
    private $id;

    public function __construct($anId)
    {
        $this->id = $anId;
    }

    public function id()
    {
        return $this->id;
    }

    public function equalsTo(OrderId $anOrderId)
    {
        return $anOrderId->id === $this->id;
    }
}



Entities

[ 91 ]

There are different implementations you can consider for implementing the OrderId. The
example shown above is quite simple. As explained in the Chapter 3, Value Objects, you can
make the __constructor method private and use static factory methods to create new
instances. Talk with your team, experiment, and agree. Because Entity Identities are not
complex Value Objects, our recommendation is that you shouldn't worry too much here.

Going back to the Order, it's time to update references to OrderId:

 class Order
 {
     private $id;
     private $amount;
     private $firstName;
     private $lastName;

     public function __construct(
         OrderId $anOrderId, Amount $amount, $aFirstName, $aLastName
     ) {
         $this->id = $anOrderId;
         $this->amount = $amount;
         $this->firstName = $aFirstName;
         $this->lastName = $aLastName;
     }

     public function id()
     {
         return $this->id;
     }

     public function firstName()
     {
         return $this->firstName;
     }

     public function lastName()
     {
         return $this->lastName;
     }

     public function amount()
     {
         return $this->amount;
     }
}

Our Entity has an Identity modeled using a Value Object. Let's consider different ways of
creating an OrderId.



Entities

[ 92 ]

Identity Operation
As stated before, the Identity of an Entity is what defines it. So then, handling it is an
important aspect of the Entity. There are usually four ways to define the Identity of an
Entity: the persistence mechanism provides the Identity, a client provides the Identity, the
application itself provides the Identity, or another Bounded Context provides the Identity.

Persistence Mechanism Generates Identity
Usually, the simplest way of generating the Identity is to delegate it to the persistence
mechanism, because the vast majority of persistence mechanisms support some kind of
Identity generation — like MySQL's AUTO_INCREMENT attribute or Postgres and Oracle
sequences. This, although simple, has a major drawback: we won't have the Identity of the
Entity until we persist it. So to some degree, if we're going with persistence mechanism-
generated Identities, we'll couple the Identity operation with the underlying persistence
store:

CREATE TABLE `orders` (
    `id` int(11) NOT NULL auto_increment,
    `amount` decimal (10,5) NOT NULL,
    `first_name` varchar(100) NOT NULL,
    `last_name` varchar(100) NOT NULL,
    PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

And then we might consider this code:

namespace Ddd\Identity\Domain\Model;

class Person
{
    private $identificationNumber;
    private $firstName;
    private $lastName;

    public function __construct(
        $anIdentificationNumber, $aFirstName, $aLastName
    ) {
        $this->identificationNumber = $anIdentificationNumber;
        $this->firstName = $aFirstName;
        $this->lastName = $aLastName;
    }

    public function identificationNumber()



Entities

[ 93 ]

    {
        return $this->identificationNumber;
    }

    public function firstName()
    {
        return $this->firstName;
    }

    public function lastName()
    {
        return $this->lastName;
    }
}

If you've ever tried to build your own ORM, you've already experienced this situation.
What's the approach for creating a new Person? If the database is going to generate the
Identity, do we have to pass it in the constructor? When and where is the magic that will
update the Person with its Identity? What happens if we end up not persisting the Entity?

Surrogate Identity
Sometimes when using an ORM to map Entities to a persistence store, some constraints are
imposed — for example, Doctrine demands an integer field if an IDENTITY generator
strategy is used. This can conflict with the Domain Model if it requires another kind of
Identity.

The simplest way to handle such a situation is by using a Layer Supertype, where the
Identity field created for the persistence store is placed:

namespace Ddd\Common\Domain\Model;

abstract class IdentifiableDomainObject
{
    private $id;

    protected function id()
    {
        return $this->id;
    }

    protected function setId($anId)
    {
        $this->id = $anId;
    }
}

http://martinfowler.com/eaaCatalog/layerSupertype.html


Entities

[ 94 ]

namespace Acme\Billing\Domain;

use Acme\Common\Domain\IdentifiableDomainObject;

class Order extends IdentifiableDomainObject
{
    private $orderId;

    public function orderId()
    {
        if (null === $this->orderId) {
           $this->orderId = new OrderId($this->id());
        }

        return $this->orderId;
    }
 }

Active Record Vs. Data Mapper for Rich Domain Models
Every project always faces the decision of which ORM should be used. There are a lot of
good ORMs for PHP out there: Doctrine, Propel, Eloquent, Paris, and many more.

Most of them are Active Record implementations. An Active Record implementation is
fine mostly for CRUD applications, but it's not the ideal solution for Rich Domain Models
for the following reasons:

The Active Record pattern assumes a one-to-one relation between an Entity and a
database table. So it couples the design of the database to the design of the object
system. And in a Rich Domain Model, sometimes Entities are constructed with
information that may come from different data sources.
Advanced things like collections and inheritance are tricky to implement.
Most of the implementations force the use, through inheritance, of some sort of
constructions that impose several conventions. This can lead to persistence
leakage into the Domain Model by coupling the Domain Model with the ORM.
The only Active Record implementation we've seen that doesn't impose
inheriting from a base class is Castle ActiveRecord from  Castle Project, a
.NET framework. While this leads to some degree of separation between
persistence and Domain concerns in the produced Entities, it doesn't decouple
the low-level persistence details from high-level Domain design.

http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://docs.castleproject.org/Active%20Record.MainPage.ashx
http://www.castleproject.org/


Entities

[ 95 ]

As mentioned in the previous chapter, currently the best ORM for PHP is Doctrine , which
is an implementation of the Data Mapper pattern. Data Mapper decouples persistence
concerns from Domain concerns, leading to persistence-free Entities. This makes the tool the
best for someone wanting to build a Rich Domain Model.

Client Provides Identity
Sometimes, when dealing with certain Domains, the Identities come naturally, with the
client consuming the Domain Model. This is likely the ideal case, because the Identity can
be modeled easily. Let's take a look at the book-selling market:

namespace Ddd\Catalog\Domain\Model\Book;

class ISBN
{
    private $isbn;

    private function __construct($anIsbn)
    {
        $this->setIsbn($anIsbn);
    }

    private function setIsbn($anIsbn)
    {
        $this->assertIsbnIsValid($anIsbn, 'The ISBN is invalid.');

        $this->isbn = $anIsbn;
    }

    public static function create($anIsbn)
    {
        return new static($anIsbn);
    }

    private function assertIsbnIsValid($anIsbn, $string)
    {
        // ... Validates an ISBN code
    }
}

http://doctrine-project.org
http://www.martinfowler.com/eaaCatalog/dataMapper.html


Entities

[ 96 ]

According to Wikipedia: The International Standard Book Number (ISBN) is a unique
numeric commercial book identifier. An ISBN is assigned to each edition and variation
(except re-printings) of a book. For example, an e-book, a paperback and a hardcover
edition of the same book would each have a different ISBN. The ISBN is 13 digits long if
assigned on or after 1 January 2007, and 10 digits long if assigned before 2007. The method
of assigning an ISBN is nation-based and varies from country to country, often depending
on how large the publishing industry is within a country.

The cool thing about the ISBN is that it's already defined in the Domain, it's a valid
identifier because it's unique, and it can be easily validated. This is a good example of an
Identity provided by the client:

class Book
{
   private $isbn;
   private $title;

   public function __construct(ISBN $anIsbn, $aTitle)
   {
       $this->isbn  = $anIsbn;
       $this->title = $aTitle;
   }
}

Now, it's just a matter of using it:

 $book = new Book(
     ISBN::create('...'),
     'Domain-Driven Design in PHP'
 );

Exercise
Think about other Domains where Identities are built in and model one.

Application Generates Identity
If the client can't provide the Identity generally, the preferred way to handle the Identity
operation is to let the application generate the Identities, usually through a UUID. This is
our recommended approach in the case that you don't have a scenario as shown in the
previous section.

https://en.wikipedia.org/wiki/International_Standard_Book_Number


Entities

[ 97 ]

According to Wikipedia:

The intent of UUIDs is to enable distributed systems to uniquely identify information
without significant central coordination. In this context the word unique should be taken to
mean practically unique rather than guaranteed unique. Since the identifiers have a finite size,
it is possible for two differing items to share the same identifier. This is a form of hash
collision. The identifier size and generation process need to be selected so as to make this
sufficiently improbable in practice. Anyone can create a UUID and use it to identify
something with reasonable confidence that the same identifier will never be unintentionally
created by anyone to identify something else. Information labeled with  UUIDs can
therefore be later combined into a single database without needing to resolve identifier (ID)
conflicts.

There are several libraries in PHP that generate UUIDs, and they can be
found at Packagist: h t t p s ://p a c k a g i s t . o r g /s e a r c h /?q =u u i d . The best
recommendation is the one developed by Ben Ramsey at the following
 link: h t t p s ://g i t h u b . c o m /r a m s e y /u u i d because it has tons of watchers
on GitHub and millions of installations on Packagist.

The preferred place to put the creation of the Identity would be inside a Repository (we'll go
deeper into this in the Chapter 10, Repositories:

namespace Ddd\Billing\Domain\Model\Order;

interface OrderRepository
{
    public function nextIdentity();
    public function add(Order $anOrder);
    public function remove(Order $anOrder);
}

When using Doctrine, we'll need to create a custom Repository that implements such an
interface. It will basically create the new Identity and use the EntityManager in order to
persist and delete Entities. A small variation is to put the nextIdentity implementation
into the interface that will become an abstract class:

namespace Ddd\Billing\Infrastructure\Domain\Model\Order;

use Ddd\Billing\Domain\Model\Order\Order;
use Ddd\Billing\Domain\Model\Order\OrderId;
use Ddd\Billing\Domain\Model\Order\OrderRepository;

use Doctrine\ORM\EntityRepository;

class DoctrineOrderRepository

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://packagist.org/search/?q=uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid
https://github.com/ramsey/uuid


Entities

[ 98 ]

    extends EntityRepository
    implements OrderRepository
{
    public function nextIdentity()
    {
        return OrderId::create();
    }

    public function add(Order $anOrder)
    {
        $this->getEntityManager()->persist($anOrder);
    }

    public function remove(Order $anOrder)
    {
       $this->getEntityManager()->remove($anOrder);
    }
}

Let's quickly review the final implementation of the OrderId Value Object:

namespace Ddd\Billing\Domain\Model\Order;

use Ramsey\Uuid\Uuid;

class OrderId
{
    private $id;

    private function __construct($anId = null)
    {
        $this->id = $id ? :Uuid::uuid4()->toString();
    }

    public static function create($anId = null )
    {
        return new static($anId);
    }
}

The main concern about this approach, as you'll see in the following sections, is how easy it
is to persist Entities that contain Value Objects. However, mapping embedded Value
Objects that are inside an Entity can be tricky, depending on the ORM.



Entities

[ 99 ]

Other Bounded Context Generates Identity
This is likely the most complex Identity generation strategy because it forces a local Entity
to be dependent not only on local Bounded Context events, but also on external Bounded
Contexts events. So in terms of maintenance, the cost would be high.

The other Bounded Context provides an interface to select the Identity from the local Entity.
It can take some of the exposed properties as its own.

When synchronization is needed between the Entities of the Bounded Contexts, it can
usually be achieved with an Event-Driven Architecture on each of the Bounded Contexts
that need to be notified when the original Entity is changed.

Persisting Entities
Currently, as discussed earlier in the chapter, the best tool for saving Entity state to a
persistent store is Doctrine ORM. Doctrine has several ways to specify Entity metadata: by
annotations in Entity code, by XML, by YAML, or by plain PHP. In this chapter, we'll
discuss in depth why annotations are not the best thing to use when mapping Entities.

Setting Up Doctrine
First of all, we need to require Doctrine through Composer. At the root folder of the project,
the command below has to be executed:

 > php composer.phar require "doctrine/orm=^2.5"

Then, these lines will allow you to set up Doctrine:

require_once '/path/to/vendor/autoload.php';

use Doctrine\ORM\Tools\Setup;
use Doctrine\ORM\EntityManager;

$paths = ['/path/to/entity-files'];
$isDevMode = false;

// the connection configuration
$dbParams = [
    'driver'   => 'pdo_mysql',
    'user'     => 'the_database_username',
    'password' => 'the_database_password',
    'dbname'   => 'the_database_name',



Entities

[ 100 ]

];

$config = Setup::createAnnotationMetadataConfiguration($paths, $isDevMode);
$entityManager = EntityManager::create($dbParams, $config);

Mapping Entities
By default, Doctrine's documentation presents the code examples using annotations. So we
begin the code example using annotations and discussing why they should be avoided
whenever possible.

To do so, we'll bring back the Order class discussed earlier in this chapter.

Mapping Entities Using Annotated Code
When Doctrine was released, a catchy way of showing how to map objects in the code
examples was by using annotations.

What's an annotation?
An annotation is a special form of metadata. In PHP, it's put under source
code comments. For example, PHPDocumentor makes use of annotations to
build API information, and PHPUnit uses some annotations to specify
data providers or to provide expectations about exceptions thrown by a
piece of code:
class SumTest extends PHPUnit_Framework_TestCase 
{
    /** @dataProvider aMethodName */
    public function testAddition() {
        //... 
    }
}

In order to map the Order Entity to the persistence store, the source code for the Order
should be modified to add the Doctrine annotations:

use Doctrine\ORM\Mapping\Entity;
use Doctrine\ORM\Mapping\Id;
use Doctrine\ORM\Mapping\GeneratedValue;
use Doctrine\ORM\Mapping\Column;

/** @Entity */
class Order



Entities

[ 101 ]

{
    /** @Id @GeneratedValue(strategy="AUTO") */
    private $id;

    /** @Column(type="decimal", precision="10", scale="5") */
    private $amount;

    /** @Column(type="string") */
    private $firstName;

    /** @Column(type="string") */
    private $lastName;

    public function __construct(
        Amount $anAmount,
        $aFirstName,
        $aLastName
    ) {
        $this->amount = $anAmount;
        $this->firstName = $aFirstName;
        $this->lastName = $aLastName;
    }

    public function id()
    {
        return $this->id;
    }

    public function firstName()
    {
        return $this->firstName;
    }

    public function lastName()
    {
        return $this->lastName;
    }

    public function amount()
    {
        return $this->amount;
    }
}



Entities

[ 102 ]

Then, to persist the Entity to the persistent store, it's just as easy to do the following:

$order = new Order(
    new Amount(15, Currency::EUR()),
    'AFirstName',
    'ALastName'
);
$entityManager->persist($order);
$entityManager->flush();

At first glance, this code looks simple, and this can be an easy way to specify mapping
information. But it comes at a cost. What's odd about the final code?

First of all, Domain concerns are mixed with Infrastructure concerns. Order is a Domain
concept, whereas Table, Column, and so on are infrastructure concerns.

As a result, this Entity is tightly coupled to the mapping information specified by the
annotations in the source code. If the Entity were required to be persisted using another
Entity manager and with different mapping metadata, this wouldn't be possible.

Annotations tend to lead to side effects and tight coupling, so it would be better to not use
them.

So what's the best way to specify mapping information? The best way is the one that allows
you to separate the mapping information from the Entity itself. This can be achieved by
using XML mapping, YAML mapping, or PHP mapping. In this book, we're going to cover
XML mapping.

Mapping Entities Using XML
To map the Order Entity using the XML mapping, the setup code of Doctrine should be
altered slightly:

require_once '/path/to/vendor/autoload.php';

use Doctrine\ORM\Tools\Setup;
use Doctrine\ORM\EntityManager;

$paths = ['/path/to/mapping-files'];
$isDevMode = false;

// the connection configuration
$dbParams = [
    'driver'   => 'pdo_mysql',
    'user'     => 'the_database_username',



Entities

[ 103 ]

    'password' => 'the_database_password',
    'dbname'   => 'the_database_name',
];

$config = Setup::createXMLMetadataConfiguration($paths, $isDevMode);
$entityManager = EntityManager::create($dbParams, $config);

The mapping file should be created on the path where Doctrine will search for the mapping
files, and the mapping files should be named after the fully qualified class name, replacing
the backslashes \ with dots. Consider the following:

Acme\Billing\Domain\Model\Order

The preceding illustration would have the mapping file named like this:

Acme.Billing.Domain.Model.Order.dcm.xml

Additionally, it's convenient that all the mapping files use a special XML Schema created
specially for specifying mapping information:

https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd

Mapping Entity Identity
Our Identity, OrderId, is a Value Object. As seen in the previous chapter, there are
different approaches for mapping a Value Object using Doctrine, embeddables, and custom
types. When Value Objects are used as Identities, the best option is custom types.

An interesting new feature in Doctrine 2.5 is that it's now possible to use Objects as
identifiers for Entities, so long as they implement the magic method __toString(). So we
can add  __toString to our Identity Value Objects and use them in our mappings:

namespace Ddd\Billing\Domain\Model\Order;

use Ramsey\Uuid\Uuid;

class OrderId
{
    // ...

    public function __toString()
    {
        return $this->id;
    }
}



Entities

[ 104 ]

Check the implementation of the Doctrine custom types. They inherit from GuidType, so
their internal representation will be a UUID. We need to specify the database native
translation. Then we need to register our custom types before we use them. If you need help
with these steps, Custom Mapping Types is a good reference.

use Doctrine\DBAL\Platforms\AbstractPlatform;
use Doctrine\DBAL\Types\GuidType;

class DoctrineOrderId extends GuidType
{
    public function getName()
    {
        return 'OrderId';
    }

    public function convertToDatabaseValue(
        $value, AbstractPlatform $platform
    ) {
        return $value->id();
    }

    public function convertToPHPValue(
        $value, AbstractPlatform $platform
    ) {
        return new OrderId($value);
    }
}

Lastly, we'll set up the registration of custom types. Again, we have to update our
bootstrapping:

require_once '/path/to/vendor/autoload.php';

// ...

\Doctrine\DBAL\Types\Type::addType(
     'OrderId',
     'Ddd\Billing\Infrastructure\Domain\Model\DoctrineOrderId'
);

$config = Setup::createXMLMetadataConfiguration($paths, $isDevMode);
$entityManager = EntityManager::create($dbParams, $config);

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/cookbook/custom-mapping-types.html


Entities

[ 105 ]

Final Mapping File
With all the changes, we're finally ready, so let's take a look at the final mapping file. The
most interesting detail is to check how the id gets mapped with our defined custom type for
OrderId:

<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity
        name="Ddd\Billing\Domain\Model\Order"
        table="orders">

        <id name="id" column="id" type="OrderId" />

        <field
            name="amount"
            type="decimal"
            nullable="false"
            scale="10"
            precision="5"
        />
        <field
            name="firstName"
            type="string"
            nullable="false"
        />
        <field
            name="lastName"
            type="string"
            nullable="false"
        />
    </entity>
</doctrine-mapping>



Entities

[ 106 ]

Testing Entities
It's relatively easy to test Entities, simply because they're plain old PHP classes with actions
derived from the Domain concept they represent. The focus of the test should be the
invariants that the Entity protects, because the behavior on the Entities will likely be
modeled around those invariants.

For example, and for the sake of simplicity, suppose a Domain Model for a blog is needed.
A possible one could be this:

class Post
{
    private $title;
    private $content;
    private $status;
    private $createdAt;
    private $publishedAt;

    public function __construct($aContent, $title)
    {
        $this->setContent($aContent);
        $this->setTitle($title);

        $this->unpublish();
        $this->createdAt(new DateTimeImmutable());
    }

    private function setContent($aContent)
    {
        $this->assertNotEmpty($aContent);

        $this->content = $aContent;
    }

    private function setTitle($aPostTitle)
    {
        $this->assertNotEmpty($aPostTitle);

        $this->title = $aPostTitle;
    }

    private function setStatus(Status $aPostStatus)
    {
        $this->assertIsAValidPostStatus($aPostStatus);

        $this->status = $aPostStatus;
    }



Entities

[ 107 ]

    private function createdAt(DateTimeImmutable $aDate)
    {
        $this->assertIsAValidDate($aDate);

        $this->createdAt = $aDate;
    }

    private function publishedAt(DateTimeImmutable $aDate)
    {
        $this->assertIsAValidDate($aDate);

        $this->publishedAt = $aDate;
    }

    public function publish()
    {
        $this->setStatus(Status::published());
        $this->publishedAt(new DateTimeImmutable());
    }

    public function unpublish()
    {
        $this->setStatus(Status::draft());
        $this->publishedAt = null ;
    }

    public function isPublished()
    {
        return $this->status->equalsTo(Status::published());
    }

    public function publicationDate()
    {
        return $this->publishedAt;
    }
}

class Status
{
    const PUBLISHED = 10;
    const DRAFT = 20;

    private $status;

    public static function published()
    {
        return new self(self::PUBLISHED);
    }



Entities

[ 108 ]

    public static function draft()
    {
        return new self(self::DRAFT);
    }

    private function __construct($aStatus)
    {
        $this->status = $aStatus;
    }

    public function equalsTo(self $aStatus)
    {
        return $this->status === $aStatus->status;
    }
}

In order to test this Domain Model, we must ensure the test covers all the Post invariants:

class PostTest extends PHPUnit_Framework_TestCase
{
     /** @test */
     public function aNewPostIsNotPublishedByDefault()
     {
          $aPost = new Post(
              'A Post Content',
              'A Post Title'
          );

          $this->assertFalse(
              $aPost->isPublished()
          );

          $this->assertNull(
              $aPost->publicationDate()
          );
      }

    /** @test */
    public function aPostCanBePublishedWithAPublicationDate()
    {
        $aPost = new Post(
            'A Post Content',
            'A Post Title'
        );

        $aPost->publish();

        $this->assertTrue(



Entities

[ 109 ]

            $aPost->isPublished()
        );

        $this->assertInstanceOf(
            'DateTimeImmutable',
            $aPost->publicationDate()
        );
    }
}

DateTimes
Because DateTimes are widely used in Entities, we think it's important to point out specific
approaches on unit testing Entities that have fields with date types. Consider that a Post is
new if it was created within the last 15 days:

class Post
{
    const NEW_TIME_INTERVAL_DAYS = 15;

    // ...
    private $createdAt;

    public function __construct($aContent, $title)
    {
        // ...
        $this->createdAt(new DateTimeImmutable());
    }

    // ...

    public function isNew()
    {
        return
            (new DateTimeImmutable())
                 ->diff($this->createdAt)
                 ->days <= self::NEW_TIME_INTERVAL_DAYS;
    }
}



Entities

[ 110 ]

The isNew() method needs to compare two DateTimes; it's a comparison between the
date when the Post was created and today's date. We compute the difference and check if
it's less than the specified amount of days. How do we unit test the isNew() method? As
we demonstrated in the implementation, it's difficult to reproduce specific flows in our test
suites. What options do we have?

Passing All Dates as Parameters
One possible option could be passing all the dates as parameters when needed:

class Post
{
    // ...

    public function __construct($aContent, $title, $createdAt = null)
    {
        // ...
        $this->createdAt($createdAt ?: new DateTimeImmutable());
    }

    // ...

    public function isNew($today = null)
    {
        return
            ($today ? :new DateTimeImmutable())
                ->diff($this->createdAt)
                ->days <= self::NEW_TIME_INTERVAL_DAYS;
    }
}

This is the easiest approach for unit testing purposes. Just pass different pairs of dates to
test all possible scenarios with 100 percent coverage. However, if you consider the client
code that's creating and asking for the isNew() method result, things don't look so nice.
The resulting code can be a bit weird because of always passing today's DateTime:

$aPost = new Post(
    'Hello world!',
    'Hi',
    new DateTimeImmutable()
);

$aPost->isNew(
    new DateTimeImmutable()
);



Entities

[ 111 ]

Test Class
Another alternative is to use the Test Class pattern. The idea is to extend the Post class with
a new one that we can manipulate to force specific scenarios. This new class is going to be
used only for unit testing purposes. The bad news is that we have to modify the original
Post class a bit, extracting some methods and changing some fields and methods from
private to protected. Some developers may worry about increasing the visibility of class
properties just because of testing reasons. However, we think that in most cases, it's worth
it:

class Post
{
    protected $createdAt;

    public function isNew()
    {
        return
            ($this->today())
                ->diff($this->createdAt)
                ->days <= self::NEW_TIME_INTERVAL_DAYS;
    }

    protected function today()
    {
        return new DateTimeImmutable();
    }

    protected function createdAt(DateTimeImmutable $aDate)
    {
        $this->assertIsAValidDate($aDate);

        $this->createdAt = $aDate;
    }
}

As you can see, we've extracted the logic for getting today's date into the today() method.
This way, by applying the Template Method pattern, we can change its behavior from a
derived class. Something similar happens with the createdAt method and field. Now
they're protected, so they can be used and overridden in derived classes:

class PostTestClass extends Post
{
    private $today;

    protected function today()
    {



Entities

[ 112 ]

       return $this->today;
    }

    public function setToday($today)
    {
       $this->today = $today;
    }
}

With these changes, we can now test our original Post class through testing
PostTestClass:

class PostTest extends PHPUnit_Framework_TestCase
{
    // ...

    /** @test */
    public function aPostIsNewIfIts15DaysOrLess()
    {
        $aPost = new PostTestClass(
            'A Post Content' ,
            'A Post Title'
        );

        $format = 'Y-m-d';
        $dateString = '2016-01-01';
        $createdAt = DateTimeImmutable::createFromFormat(
            $format,
            $dateString
        );

        $aPost->createdAt($createdAt);
        $aPost->setToday(
            $createdAt->add(
                new DateInterval('P15D')
            )
        );

        $this->assertTrue(
            $aPost->isNew()
        );

        $aPost->setToday(
            $createdAt->add(
               new DateInterval('P16D')
            )
        );



Entities

[ 113 ]

        $this->assertFalse(
            $aPost->isNew()
        );
    }
}

Just one last small detail: with this approach, it's impossible to achieve 100 percent coverage
on the Post class, because the today() method is never going to be executed. However, it
can be covered by other tests.

External Fake
Another option is to wrap calls to the DateTimeImmutable constructor or named
constructors using a new class and some static methods. In doing so, we can statically
change the result of those methods to behave differently based on specific testing scenarios:

class Post
{
    // ...
    private $createdAt;

    public function __construct($aContent, $title)
    {
        // ...
        $this->createdAt(MyCustomDateTimeBuilder::today());
    }

    // ...

    public function isNew()
    {
        return
            (MyCustomDateTimeBuilder::today())
                ->diff($this->createdAt)
                ->days <= self::NEW_TIME_INTERVAL_DAYS;
    }
}



Entities

[ 114 ]

For getting today's DateTime, we now use a static call to
MyCustomDateTimeBuilder::today(). This class also has some setter methods to fake
the result to return in the next calls:

class PostTest extends PHPUnit_Framework_TestCase
{
    // ...

    /** @test */
    public function aPostIsNewIfIts15DaysOrLess()
    {
        $createdAt = DateTimeImmutable::createFromFormat(
            'Y-m-d',
            '2016-01-01'
        );

        MyCustomDateTimeBuilder::setReturnDates(
            [
                $createdAt,
                $createdAt->add(
                    new DateInterval('P15D')
                ),
                $createdAt->add(
                    new DateInterval('P16D')
                )
            ]
        );

        $aPost = new Post(
            'A Post Content' ,
            'A Post Title'
        );

        $this->assertTrue(
            $aPost->isNew()
        );

        $this->assertFalse(
            $aPost->isNew()
        );
    }
}

The main problem with this approach is it's coupled statically with an object.
Depending on your use case, it'll also be tricky to create a flexible fake object.



Entities

[ 115 ]

Reflection
You can also use reflection techniques for building a new Post class with custom dates.
Consider Mimic, a simple functional library for object prototyping, data hydration, and data
exposition:

namespace Domain;

use mimic as m;

class ComputerScientist {
    private $name;
    private $surname;

    public function __construct($name, $surname)
    {
        $this->name = $name;
        $this->surname = $surname;
    }

    public function rocks()
    {
        return $this->name . ' ' . $this->surname . ' rocks!';
    }
}

assert(m\prototype('Domain\ComputerScientist')
    instanceof Domain\ComputerScientist);

m\hydrate('Domain\ComputerScientist', [
    'name'   =>'John' ,
    'surname'=>'McCarthy'
])->rocks(); //John McCarthy rocks!

assert(m\expose(
    new Domain\ComputerScientist('Grace', 'Hopper')) ==
    [
        'name'    => 'Grace' ,
        'surname' => 'Hopper'
    ]
)

Share and Discuss
Discuss with your workmates how to properly unit test your Entities with
fixed DateTimes and come up with additional alternatives.

https://github.com/keyvanakbary/mimic


Entities

[ 116 ]

If you want to know more about testing patterns and approaches, take a look at the book
xUnit Test Patterns: Refactoring Test Code by Gerard Meszaros.

Validation
Validation is a highly important process in our Domain Model. It checks not only for the
correctness of attributes, but also for that of entire objects and the composition of those
objects. Different levels of validation are required in order to keep this Model in a valid
state. Just because an object consists of valid attributes (on a per basis) doesn't necessarily
mean the object (as a whole) is valid. And the opposite is true: valid objects don't
necessarily equal valid compositions.

Attribute Validation
Some people understand validation as the process whereby a service validates the state of a
given object. In this case, the validation conforms to a Design-by-contract approach,
which consists of preconditions, postconditions, and invariants. One such way to protect a
single attribute is by using Chapter 3, Value Objects. In order to make our design more
flexible for change, we focus only on asserting Domain preconditions that must be met.
Here, we'll be using guards as an easy way of validating the preconditions:

class Username
{
    const MIN_LENGTH = 5;
    const MAX_LENGTH = 10;
    const FORMAT = '/^[a-zA-Z0-9_]+$/';

    private $username;

    public function __construct($username)
    {
        $this->setUsername($username);
    }

    private setUsername($username)
    {
        $this->assertNotEmpty($username);
        $this->assertNotTooShort($username);
        $this->assertNotTooLong($username);
        $this->assertValidFormat($username);
        $this->username = $username;
    }

http://en.wikipedia.org/wiki/Design_by_contract


Entities

[ 117 ]

    private function assertNotEmpty($username)
    {
        if (empty($username)) {
            throw new InvalidArgumentException('Empty username');
        }
    }

    private function assertNotTooShort($username)
    {
        if (strlen($username) < self::MIN_LENGTH) {
            throw new InvalidArgumentException(sprintf(
                'Username must be %d characters or more',
                self::MIN_LENGTH
            ));
        }
    }

    private function assertNotTooLong($username)
    {
        if (strlen( $username) > self::MAX_LENGTH) {
            throw new InvalidArgumentException(sprintf(
                'Username must be %d characters or less',
                self::MAX_LENGTH
            ));
        }
    }

    private function assertValidFormat($username)
    {
        if (preg_match(self:: FORMAT, $username) !== 1) {
            throw new InvalidArgumentException(
                'Invalid username format'
            );
        }
    }
}

As you can see in the example above, there are four preconditions that must be satisfied in
order to build a Username Value Object. It:

Must not be empty
Must be at least 5 characters
Must be less than 10 characters
Must follow a format of alphanumeric characters or underscores



Entities

[ 118 ]

If all the preconditions are met, the attribute will be set and the object will be successfully
built. Otherwise, an InvalidArgumentException will be raised, execution will be halted,
and the client will be shown an error.

Some developers may consider this kind of validation defensive programming. However,
we're not checking that the input is a string or that nulls are not permitted. We can't avoid
people using our code incorrectly, but we can control the correctness of our Domain state.
As seen in the Chapter 3, Value Objects, validation can help us with security too.

Defensive programming isn't a bad thing. In general, it makes sense when developing
components or libraries that are going to be used as a third party in other projects.
However, when developing your own Bounded Context, those extra paranoid checks (nulls,
basic types, type hinting, and so  on.) can be avoided to increase development speed by
relying on the coverage of your unit test suite.

Entire Object Validation
There are times when an object composed of valid properties, as a whole, can still be
deemed invalid. It can be tempting to add this kind of validation to the object itself, but
generally this is an anti-pattern. Higher-level validation changes at a rhythm different than
that of the object logic itself. Also, it's good practice to separate these responsibilities.

The validation informs the client about any errors that have been found or collects the
results to be reviewed later, as sometimes we don't want to stop the execution at the first
sign of trouble.

An abstract and reusable Validator could be something like this:

abstract class Validator
{
    private $validationHandler;

    public function __construct(ValidationHandler $validationHandler)
    {
        $this->validationHandler = $validationHandler;
    }

    protected function handleError($error)
    {
        $this->validationHandler->handleError($error);
    }

    abstract public function validate();
}

https://en.wikipedia.org/wiki/Defensive_programming


Entities

[ 119 ]

As a concrete example, we want to validate an entire Location object, composed of valid
Country, City, and Postcode Value Objects. However, these individual values might be in
an invalid state at the time of validation. Maybe the city doesn't form part of the country, or
maybe the postcode doesn't follow the city format:

class Location
{
    private $country;
    private $city;
    private $postcode;

    public function __construct(
        Country $country, City $city, Postcode $postcode
    ) {
        $this->country = $country;
        $this->city = $city;
        $this->postcode = $postcode;
    }

    public function country()
    {
        return $this->country;
    }

    public function city()
    {
        return $this->city;
    }

    public function postcode()
    {
        return $this->postcode;
    }
}

The validator checks the state of the Location object in its entirety, analyzing the meaning
of the relationships between properties:

class LocationValidator extends Validator
{
    private $location;

    public function __construct(
        Location $location, ValidationHandler $validationHandler
    ) {
        parent:: __construct($validationHandler);
        $this->location = $location;



Entities

[ 120 ]

    }

    public function validate()
    {
        if (!$this->location->country()->hasCity(
            $this->location->city()
        )) {
            $this->handleError('City not found');
        }

        if (!$this->location->city()->isPostcodeValid(
            $this->location->postcode()
        )) {
            $this->handleError('Invalid postcode');
        }
    }
}

Once all the properties have been set, we're able to validate the Entity, most likely after
some described process. On the surface, it looks as if the Location validates itself. However,
this isn't the case. The  Location class delegates this validation to a concrete validator
instance, splitting these two clear responsibilities:

class Location
{
    // ...

    public function validate(ValidationHandler $validationHandler)
    {
     $validator = new LocationValidator($this, $validationHandler);
     $validator->validate();
    }
}

Decoupling Validation Messages
With some minor changes to our existing implementation, we're able to decouple the 
validation messages from the validator:

class LocationValidationHandler implements ValidationHandler
{
    public function handleCityNotFoundInCountry();

    public function handleInvalidPostcodeForCity();
}



Entities

[ 121 ]

class LocationValidator
{
    private $location;
    private $validationHandler;

    public function __construct(
        Location $location,
        LocationValidationHandler $validationHandler
    ) {
        $this->location = $location;
        $this->validationHandler = $validationHandler;
    }

    public function validate()
    {
        if (!$this->location->country()->hasCity(
            $this->location->city()
        )) {
            $this->validationHandler->handleCityNotFoundInCountry();
        }

        if (! $this->location->city()->isPostcodeValid(
            $this->location->postcode()
        )) {
            $this->validationHandler->handleInvalidPostcodeForCity();
        }
    }
}

We also need to change the signature of the validation method to the following:

class Location
{
   // ...

    public function validate(
        LocationValidationHandler $validationHandler
    ) {
        $validator = new LocationValidator($this, $validationHandler);
        $validator->validate();
    }
}



Entities

[ 122 ]

Validating Object Compositions
Validating object compositions can be complicated. As such, the preferred way of achieving
this is through a Domain Service. The service then communicates with Repositories in order
to retrieve the valid Aggregate. Due to the likely complex object graphs that can be created,
an Aggregate could be in an intermediate state, requiring other Aggregates to be validated
beforehand. We can use Domain Events to notify other parts of the system that a particular
element has been validated.

Entities and Domain Events
We'll explore Chapter 6, Domain-Events in future chapters; however, it's important to
highlight that operations performed on Entities can fire Domain Events. This approach is 
used to communicate the Domain change to other parts of the Application, or even to other
Applications, as you'll see in Chapter 12, Integrating Bounded Contexts:

class Post
{
   // ...

    public function publish()
    {
        $this->setStatus(
            Status::published()
        );

        $this->publishedAt(new DateTimeImmutable());

        DomainEventPublisher::instance()->publish(
            new PostPublished($this->id)
        );
    }

    public function unpublish()
    {
        $this->setStatus(
            Status::draft()
        );

        $this-> publishedAt = null;

        DomainEventPublisher::instance()->publish(
            new PostUnpublished($this->id)
        );



Entities

[ 123 ]

    }

    // ...
}

Domain Events can even be fired when a new instance of our Entity is created:

class User
{
    // ...

    public function __construct(UserId $userId, $email, $password)
    {
        $this->setUserId($userId);
        $this->setEmail($email);
        $this->setPassword($password);

        DomainEventPublisher::instance()->publish(
            new UserRegistered($this->userId)
        );
    }
}

Wrap-Up
Some concepts in the Domain demand Identity — that is, changes to their internal states
don't change their own unique identities. We've seen how modeling Identity as a Value
Object brings benefits like immutability, in addition to logic for operating the Identity itself.
We've also shown several ways of providing Identity, restated in the following pointers:

Persistence mechanism: Easy to implement, but you won't have the Identity
before persisting the object, which delays and complicates event propagation.
Surrogate ID: Some ORMs require an extra field on your Entity to map the
Identity with the persisting mechanism.
Provided by the client: Sometimes the Identity fits a Domain concept and you can
model it inside your Domain.
Generated by the application: You can use a library to generate IDs.
Generated by a Bounded Context: Probably the most complex strategy. Other
Bounded Contexts provide an interface for generating Identities.



Entities

[ 124 ]

We've seen and discussed Doctrine as a persistence mechanism, we've looked at the
drawbacks of using the Active Record pattern, and finally, we've checked different levels of
Entity validation:

Attribute validation: Check for specifics inside the object state through
preconditions, postconditions, and invariants.
Entire object validation: Look for consistency of an object as a whole. Extracting
the validation to an external service is a good practice.
Object compositions: Complex object compositions could be validated through
Domain Services. A good way of communicating this to the rest of the application
is through Domain Events.



5
Services

You've already seen what Entities and Value Objects are. As basic building blocks, they
should contain most of the business logic of any application. However, there are some
scenarios where Entities and Value Objects aren't the best solutions. Let's take a look at
what Eric Evans has to say about this in his book, Domain-Driven Design: Tackling
Complexity in the Heart of Software:

When a significant process or transformation in the domain is not a natural
responsibility of an Entity or Value Object, add an operation to the model as
standalone interface declared as a Service. Define the interface in terms of the
language of the model and make sure the operation name is part of the
Ubiquitous Language. Make the Service stateless.

So when there are operations that need to be represented, but Entities and Value Objects
aren't the best place, you should consider modeling these operations as Services. In
Domain-Driven Design, there are typically three different types of Services you'll encounter:

Application Services: Operate on scalar types, transforming them into Domain
types. A scalar type can be considered any type that's unknown to the Domain
Model. This includes primitive types and types that don't belong to the Domain.
We'll provide an overview in this chapter, but for a deeper look at this topic,
check out the Chapter 11, Application.
Domain Services: Operate only on types belonging to the Domain. They contain
meaningful concepts that can be found within the Ubiquitous Language. They
hold operations that don't fit well into Value Objects or Entities.
Infrastructure Services: Are operations that fulfill infrastructure concerns, such
as sending emails and logging meaningful data. In terms of Hexagonal
Architecture, they live outside the Domain boundary.

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Services

[ 126 ]

Application Services
Application Services are the middleware between the outside world and the Domain logic.
The purpose of such a mechanism is to transform commands from the outside world into
meaningful Domain instructions.

Let's consider the User signs up to our platform use case. Starting with an outside-in
approach: from the delivery mechanism, we need to compose the input request for our
Domain operation. Using a framework like Symfony as the delivery mechanism, the code
would look something like this:

class SignUpController extends Controller
{
    public function signUpAction(Request $request)
    {
        $signUpService = new SignUpUserService(
            $this->get('user_repository')
        );

        try {
            $response = $signUpService->execute(new SignUpUserRequest(
                $request->request->get('email'),
                $request->request->get('password')
            ));
        } catch (UserAlreadyExistsException $e) {
            return $this->render('error.html.twig', $response);
        }

        return $this->render('success.html.twig', $response);
    }
}

As you can see, we create a new instance of our Application Services, passing all
dependencies needed — in this case, a UserRepository. UserRepository is an interface
that can be implemented with any specific technology (Example: MySQL, Redis,
Elasticsearch). Then, we build a request object for our Application Service in order to
abstract the delivery mechanism — in this example, a web request — from the business
logic. Last, we execute the Application Service, get the response, and use that response for
rendering the result. On the Domain side, let's check a possible implementation for the
Application Service that coordinates the logic that fulfills the User signs up use case:

class SignUpUserService
{
    private $userRepository;

    public function __construct(UserRepository $userRepository)



Services

[ 127 ]

    {
        $this->userRepository = $userRepository;
    }

    public function execute(SignUpUserRequest $request)
    {
        $user = $this->userRepository->userOfEmail($request->email);
        if ($user) {
            throw new UserAlreadyExistsException();
        }

        $user = new User(
            $this->userRepository->nextIdentity(),
            $request->email,
            $request->password
        );

        $this->userRepository->add($user);

        return new SignUpUserResponse($user);
    }
}

Everything in the code is about the Domain problem we want to solve, and not about the
specific technology we're using to solve it. With this approach, we can decouple the high-
level policies from the low-level implementation details. The communication between the
delivery mechanism and the Domain is carried by data structures called DTOs, which we
introduced in the Chapter 2, Architectural Styles:

class SignUpUserRequest
{
    public $email;
    public $password;

    public function __construct($email, $password)
    {
        $this->email = $email;
        $this->password = $password;
    }
}



Services

[ 128 ]

There are different strategies for returning content, but for now, consider that we shouldn't
return our Entities so that they can't be modified from outside our Application Services.
That's why it's common to return another DTO with information, rather than the whole
Entity. Let's see a simple example:

class SignUpUserResponse
{
    public $id;
    public $email;

    public function __construct(User $user)
    {
        $this->id = $user->id();
        $this->email = $user->email();
    }
}

For creating your responses, you can use getters or public instance variables. Application
Services should take care with transaction scopes and security. However, you'll delve into
more detail about these and other things related to Application Services in the Chapter
11, Application.

Domain Services
Throughout conversations with Domain Experts, you'll come across concepts in the
Ubiquitous Language that can't be neatly represented as either an Entity or a Value Object,
such as:

Users being able to sign into systems by themselves
A shopping cart being able to become an order by itself

The preceding example are two concrete concepts, neither of which can naturally be bound
to either an Entity or a Value Object. Further highlighting this oddity, we can attempt to
model the behavior as follows:

class User
{
    public function signUp($aUsername, $aPassword)
    {
        // ...
    }
}



Services

[ 129 ]

class Cart
{
    public function createOrder()
    {
        // ...
    }
}

In the case of the first implementation, we're not able to know that the given username and
password relate to the invoked-upon user instance. Clearly, this operation doesn't suit this
Entity; instead, it should be extracted out into a separate class, making its intention explicit.

With this in mind, we could create a Domain Service with the sole responsibility of
authenticating users:

class SignUp
{
    public function execute($aUsername, $aPassword)
    {
        // ...
    }
}

Similarly, as in the case of the second example, we could create a Domain Service
specialized in creating orders from a supplied cart:

class CreateOrderFromCart
{
    public function execute(Cart $aCart)
    {
        // ...
    }
}

A Domain Service can be defined as an operation that fulfills a Domain task and naturally
doesn't fit into either an Entity or a Value Object. As concepts that represent operations in
the Domain, Domain Services should be used by clients regardless of their run history.
Domain Services don't hold any kind of state by themselves, so Domain Services are
stateless operations.



Services

[ 130 ]

Domain Services and Infrastructure Services
It's common to encounter infrastructural dependencies when modeling a Domain Service
 — for example, in the case where an authentication mechanism that handles password
hashing is required. In this instance, you could use a Separated Interface, which allows
for multiple hashing mechanisms to be defined. Using this pattern still provides you with a
clear Separation of Concerns between the Domain and the Infrastructure:

namespace Ddd\Auth\Domain\Model;

interface SignUp
{
    public function execute($aUsername, $aPassword);
}

Using the preceding interface found in the Domain, we could create an implementation in
the Infrastructure layer, like the following:

namespace Ddd\Auth\Infrastructure\Authentication;

class DefaultHashingSignUp implements Ddd\Auth\Domain\Model\SignUp
{
    private $userRepository;

    public function __construct(UserRepository $userRepository)
    {
        $this->userRepository = $userRepository;
    }

    public function execute($aUsername, $aPassword)
    {
        if (!$this->userRepository->has($aUsername)) {
            throw UserDoesNotExistException::fromUsername($aUsername);
        }

        $aUser = $this->userRepository->byUsername($aUsername);

        if (!$this->isPasswordValidForUser($aUser, $aPassword)) {
            throw new BadCredentialsException($aUser, $aPassword);
        }

        return $aUser;
    }

    private function isPasswordValidForUser(
        User $aUser, $anUnencryptedPassword
    ) {

http://martinfowler.com/eaaCatalog/separatedInterface.html


Services

[ 131 ]

        return password_verify($anUnencryptedPassword,$aUser->hash());
    }
}

Here is another implementation based instead on the MD5 algorithm:

namespace Ddd\Auth\Infrastructure\Authentication;

use Ddd\Auth\Domain\Model\SignUp

class Md5HashingSignUp implements SignUp
{
    const SALT = 'S0m3S4lT' ;

    private $userRepository;

    public function __construct(UserRepository $userRepository)
    {
        $this->userRepository = $userRepository;
    }

    public function execute($aUsername, $aPassword)
    {
        if (!$this->userRepository->has($aUsername)) {
            throw new InvalidArgumentException(
                sprintf('The user "%s" does not exist.', $aUsername)
            );
        }

        $aUser = $this->userRepository->byUsername($aUsername);

        if ($this->isPasswordInvalidFor($aUser, $aPassword)) {
            throw new BadCredentialsException($aUser, $aPassword);
        }

        return $aUser;
    }

    private function salt()
    {
        return md5(self::SALT);
    }

    private function isPasswordInvalidFor(
        User $aUser, $anUnencryptedPassword
    ) {
        $encryptedPassword = md5(
            $anUnencryptedPassword . '_' .$this->salt()



Services

[ 132 ]

        );

        return $aUser->hash() !== $encryptedPassword;
    }
}

Opting for this choice allows us to have multiple implementations of the Domain Service
interface at the Infrastructure layer. In other words, we end up with several Infrastructure
Domain Services. Each Infrastructure service will be responsible for handling a different
hash mechanism. Depending on the implementation, the use can easily be managed
through a Dependency Injection container — for example, through Symfony's Dependency
Injection component:

<?xml version="1.0"?>
<container
    xmlns="http://symfony.com/schema/dic/services"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://symfony.com/schema/dic/services
        http://symfony.com/schema/dic/services/services-1.0.xsd">

    <services>

        <service id="sign_in" alias="sign_in.default" />

        <service id="sign_in.default"
            class="Ddd\Auth\Infrastructure\Authentication
            \DefaultHashingSignUp">
            <argument type="service" id="user_repository"/>
        </service>

        <service id="sign_in.md5"
            class="Ddd\Auth\Infrastructure\Authentication
                \Md5HashingSignUp">
            <argument type="service" id="user_repository"/>
        </service>

    </services>
</container>

If, in the future, we wish to handle a new type of hashing, we can simply start by
implementing the Domain Service interface. Then it's a matter of declaring the service in the
Dependency Injection container and replacing the service alias dependency with the newly
created one.



Services

[ 133 ]

An Issue of Code Reuse
Although the implementation described previously clearly defines the Separation of
Concerns, we're required to repeat the password verification algorithm every time we wish
to implement a new hashing mechanism. An alternative for solving this problem, which
improves code reuse, is by separating out these two responsibilities. We could instead
extract the password hashing logic out into a specialized class, using the Strategy
Pattern for all defined hashing algorithms. This leaves the design open for extension and
closed for modification:

namespace Ddd\Auth\Domain\Model;

class SignUp
{
    private $userRepository; 
    private $passwordHashing;

    public function __construct(
        UserRepository $userRepository, PasswordHashing $passwordHashing
    ) {
        $this->userRepository = $userRepository;
        $this->passwordHashing = $passwordHashing;
    }

    public function execute($aUsername, $aPassword)
    {
        if (!$this->userRepository->has($aUsername)) {
            throw new InvalidArgumentException(
                sprintf('The user "%s" does not exist.', $aUsername)
            );
        }

        $aUser = $this->userRepository->byUsername($aUsername);

        if ($this->isPasswordInvalidFor($aUser, $aPassword)) {
            throw new BadCredentialsException($aUser, $aPassword);
        }

        return $aUser;
    }

    private function isPasswordInvalidFor(User $aUser, $plainPassword)
    {
        return !$this->passwordHashing->verify(
            $plainPassword,
            $aUser->hash()
        );

http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Strategy_pattern


Services

[ 134 ]

    }
}

interface PasswordHashing
{
    /**
     * @param string $password
     * @param string $hash
     * @return boolean
     */
    public function verify($plainPassword, hash);
}

Defining different hashing strategies is as easy as implementing the PasswordHashing
interface:

namespace Ddd\Auth\Infrastructure\Authentication;

class BasicPasswordHashing
    implements \Ddd\Auth\Domain\Model\PasswordHashing
{
    public function verify($plainPassword, $hash)
    {
        return password_verify($plainPassword, $hash);
    }
}

class Md5PasswordHashing
    implements Ddd\Auth\Domain\Model\PasswordHashing
{
    const SALT = 'S0m3S4lT' ;

    public function verify($plainPassword, $hash)
    {
        return $hash === $this-> calculateHash($plainPassword);
    }

    private function calculateHash($plainPassword)
    {
        return md5($plainPassword . '_' .$this-> salt());
    }

    private function salt()
    {
        return md5(self::SALT);
    }
}



Services

[ 135 ]

Testing Domain Services
Given the user authentication example from multiple Domain Service implementations, it's
extremely beneficial to be able to easily test the service. Typically, however, testing the
Template Method implementations can be tricky. As a result, we'll be using a plain
password hashing implementation for testing purposes:

class PlainPasswordHashing implements PasswordHashing
{
    public function verify($plainPassword, $hash)
    {
        return $plainPassword === $hash;
    }
}

Now we can test all cases in the Domain Service:

class SignUpTest extends PHPUnit_Framework_TestCase
{
    private $signUp;
    private $userRepository;

    protected function setUp()
    {
        $this->userRepository = new InMemoryUserRepository();
        $this->signUp = new SignUp(
            $this->userRepository,
            new PlainPasswordHashing()
        );
    }

    /**
     * @test
     * @expectedException InvalidArgumentException
     */
    public function itShouldComplainIfTheUserDoesNotExist()
    {
        $this->signUp->execute('test-username', 'test-password');
    }

    /**
     * @test
     * @expectedException BadCredentialsException
     */
    public function itShouldTellIfThePasswordDoesNotMatch()
    {
        $this->userRepository->add(



Services

[ 136 ]

            new User(
                'test-username',
                'test-password'
            )
        );

        $this->signUp->execute('test-username', 'no-matching-password')
    }

    /**
     * @test
     */
    public function itShouldTellIfTheUserMatchesProvidedPassword()
    {
        $this->userRepository->add(
            new User(
                'test-username',
                'test-password'
            )
        );

        $this->assertInstanceOf(
            'Ddd\Domain\Model\User\User',
            $this->signUp->execute('test-username', 'test-password')
        );
    }
}

Anemic Domain Models Vs Rich Domain
Models
You must be cautious not to overuse Domain Service abstractions within your system.
Following this path can lead to Entities and Value Objects being stripped of all behavior 
and becoming mere data containers. This is contrary to the goal of Object-Oriented
Programming, which can be thought of as the gathering of both data and behavior into
semantic units called objects, with the intent of expressing real-world concepts and
problems. Domain Service overuse can be considered an anti-pattern and is referred to as
the Anemic Domain Model.



Services

[ 137 ]

Typically, when starting a new project or feature, it's easy to fall into the trap of modeling
the data first. This commonly includes thinking that each database table has a direct one-to-
one object form representation. However, this thinking may or may not be the exact case all
the time.

Suppose we're tasked with modeling an order processing system. If we start by modeling
the data first, we could end up with an SQL script like this:

CREATE TABLE `orders` (
    `ID` INTEGER NOT NULL AUTO_INCREMENT,
    `CUSTOMER_ID` INTEGER NOT NULL,
    `AMOUNT` DECIMAL(17, 2) NOT NULL DEFAULT '0.00',
    `STATUS` TINYINT NOT NULL DEFAULT 0,
    `CREATED_AT` DATETIME NOT NULL,
    `UPDATED_AT` DATETIME NOT NULL,
    PRIMARY KEY (`ID`)
) ENGINE=INNODB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

From this, it's relatively easy to create an Order class representation. This representation
includes the required accessor methods, which are used to set or get data to and from the
underlying orders database table:

class Order
{
    const STATUS_CREATED   = 10;
    const STATUS_ACCEPTED  = 20;
    const STATUS_PAID      = 30;
    const STATUS_PROCESSED = 40;

    private $id;
    private $customerId;
    private $amount;
    private $status;
    private $createdAt;
    private $updatedAt;

    public function __construct(
        $customerId,
        $amount,
        $status,
        DateTimeInterface $createdAt,
        DateTimeInterface $updatedAt
    ) {
        $this->customerId = $customerId;
        $this->amount = $amount;
        $this->status = $status;
        $this->createdAt = $createdAt;



Services

[ 138 ]

        $this->updatedAt = $updatedAt;
    }

    public function setId($id)
    {
        $this->id = $id;
    }

    public function getId()
    {
        return $this->id;
    }

    public function setCustomerId($customerId)
    {
        $this->customerId = $customerId;
    }

    public function getCustomerId()
    {
        return $this->customerId;
    }

    public function setAmount($amount)
    {
        $this->amount = $amount;
    }

    public function getAmount()
    {
        return $this->amount;
    }

    public function setStatus($status)
    {
        $this->status = $status;
    }

    public function getStatus()
    {
        return $this->status;
    }

    public function setCreatedAt(DateTimeInterface $createdAt)
    {
        $this->createdAt = $createdAt;
    }



Services

[ 139 ]

    public function getCreatedAt()
    {
        return $this->createdAt;
    }

    public function setUpdatedAt(DateTimeInterface $updatedAt)
    {
        $this->updatedAt = $updatedAt;
    }

    public function getUpdatedAt()
    {
        return $this->updatedAt;
    }
}

An example use case for this implementation could be to update the order status as follows:

// Fetch an order from the database
$anOrder = $orderRepository->find( 1 );

// Update order status
$anOrder->setStatus(Order::STATUS_ACCEPTED);

// Update updatedAt field
$anOrder->setUpdatedAt(new DateTimeImmutable());

// Save the order to the database
$orderRepository->save($anOrder);

With regard to code reuse, this code has a problem similar to the initial user authentication
solution. To resolve this issue, defenders of such a practice suggest the use of a Service
layer, thereby making the operations explicit and reusable. This preceding implementation
could now instead be encapsulated into a separate class:

class ChangeOrderStatusService
{
    private $orderRepository;

    public function __construct(OrderRepository $orderRepository)
    {
        $this->orderRepository = $orderRepository;
    }

    public function execute($anOrderId, $anOrderStatus)
    {
        // Fetch an order from the database
        $anOrder = $this->orderRepository->find($anOrderId);

http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/serviceLayer.html


Services

[ 140 ]

        // Update order status
        $anOrder->setStatus($anOrderStatus);

        // Update updatedAt field
        $anOrder->setUpdatedAt(new DateTimeImmutable());

        // Save the order to the database
        $this->orderRepository->save($anOrder);
    }
}

Or, in the case of updating an order amount, consider this:

class UpdateOrderAmountService
{
    private $orderRepository;

    public function __construct(OrderRepository $orderRepository)
    {
        $this->orderRepository = $orderRepository;
    }

    public function execute( $orderId, $amount)
    {
        $anOrder = $this->orderRepository->find(1);

        $anOrder->setAmount($amount);
        $anOrder->setUpdatedAt(new DateTimeImmutable());
        $this->orderRepository->save($anOrder);
    }
}

The client code would be drastically reduced following a clearly intentioned operation:

$updateOrderAmountService = new UpdateOrderAmountService(
    $orderRepository
);

$updateOrderAmountService->execute(1, 20.5);

Implementing this approach can result in a large degree of code reusability. Someone who
wishes to update the order amount simply has to retrieve an instance of
UpdateOrderAmountService and invoke the execute method with the appropriate
parameters.



Services

[ 141 ]

However, choosing this path breaks the discussed Object-Oriented Design principles and
incurs the costs of building a Domain Model without taking advantage of any of the
benefits.

Anemic Domain Model Breaks Encapsulation
If we revisit the code used to define the services within our Service layer, we can see that as
a client making use of the Order Entity, we're required to know every detail of its internal
representation. This finding goes against the fundamental rule of Object-Oriented
Programming, which is combining data with subsequent behavior

Anemic Domain Model Brings a False Sense of
Code Reuse
Say there's an instance where a client bypasses UpdateOrderAmountService and instead
fetches, updates, and persists directly to OrderRepository. Then, all the extra business
logic that the UpdateOrderAmountService service might have won't be executed. This
could lead to the order being stored in an inconsistent state. As such, invariants should be
correctly guarded, and the best way to do this is to let the true Domain Model handle it. In
the case of this example, the Order Entity would be the best place to ensure this:

class Order
{
    // ...
    public function changeAmount($amount)
    {
        $this->amount = $amount;
        $this->setUpdatedAt(new DateTimeImmutable());
    }
}

Note that by pushing this action down into the Entity and naming it in terms of the
Ubiquitous Language, the system achieves great code reuse. Anyone who now wishes to
change the amount of the order has to invoke the Order::changeAmount method directly.

This leads to far richer classes, where behavior is the goal for code reuse. This is commonly
referred to as a Rich Domain Model.



Services

[ 142 ]

How to Avoid Anemic Domain Models
The way to avoid falling into an Anemic Domain Model is to, when starting a new project
or feature, think of the behavior first. Databases, ORMs, and so on are just implementation
details, and we should strive to push the decision to use these tools as late in the
development process as we can. In doing so, we can focus on the one true attribute that
matters: the behavior.

Just as is the case with Entities, Domain Services can also fire Chapter 6, Domain-Events.
However, when events are mostly fired by Domain Services and not Entities, it's again an
indicator that you may be creating an Anemic Domain Model.

Wrap-Up
As we've seen, Services represent operations inside our system, and we can differentiate
between three versions of them:

Application Services: Help coordinate requests from the outside world into the
Domain. These Services should not contain Domain logic. Transactions are
handled in the application level; wrapping your services inside transnational
decorators will make your code transaction agnostic.
Domain Services: Operate with Domain concepts only, which are expressed by
the Ubiquitous Language. Remember to postpone implementation details and
think of behavior first, as abuse of Domain Services will lead to Anemic Domain
Models and bad Object-Oriented Design.
Infrastructure Services: Operate over Infrastructure, doing things like sending
emails or logging information.

Our most important recommendation is that you should consider all your options before
deciding on creating a Domain Service. First try to move your business logic inside an
Entity or Value. Check with some workmates. Review again. If, after different approaches,
the best option is creating a Domain Service, go for it.



6
Domain-Events

Software Events are things that happened in the system that other components might be
interested in knowing about. PHP developers are generally not used to working with
Events, which are not a feature in the language. However, it's more common to see how
new frameworks and libraries embrace them to provide new ways of decoupling, reusing,
and speeding up code.

Domain Events are Events related to Domain changes. Domain Events are things that
happen in our Domain that Domain Experts care about.

In Domain-Driven Design, Domain Events are fundamental building blocks that help:

Communicate with other Bounded Contexts.
Improve performance and scalability, pushing for eventual consistency.
Serve as historical checkpoints.

Domain Events represent the essence of asynchronous communication. For more on this
topic, we recommend the book Enterprise Integration Patterns:  Designing, Building, and
Deploying Messaging Solutions by Gregor Hohpe and Bobby Woolf.

http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683


Domain-Events

[ 144 ]

Introduction
Think about a JavaScript 2D platform game. There are tons of different components
interacting with each other on the screen, all at the same time. There's a component that
indicates the number of lives remaining, another one that shows all the points scored, and
another one counting down the time remaining to finish the current level. Each time your
character jumps on an enemy, the points increase. When your scoring goes higher than a
certain number of points, you get an extra life. When your character picks up a key, a door
usually opens. But how do all these components interact with one another? What's the
optimal architecture for this scenario?

There are probably two main options: the first one is to couple each component with the
ones it's connected to. However, in the above example, that means a lot of components are
coupled together, with each new addition requiring the developer to modify the code. But
do you remember the Open Closed Principle (OCP)? Adding a new component shouldn't
make it so the first component has to be updated; this would be too much work to maintain.

The second — and better — approach is to connect all the components to a single object that
handles all the important Events in the game. It receives Events from each component and
forwards them to specific components. For example, the scoring component would be
interested in an EnemyKilled Event, while the LifeCaptured Event is quite useful for the
player Entity and the remaining lives component. In this way, all components are coupled
to a single component that manages all the notifications. With this approach, adding or
removing components doesn't affect the existing ones.

When developing a single application, Events come in handy for decoupling components.
When developing a whole Domain in a distributed way, Events are very useful for
decoupling each service or application that plays a role in the Domain. The key points are
the same, but on a different scale.

Definition
Domain Events are one specific type of Event used for notifying local or remote Bounded
Contexts of Domain changes.

Vaughn Vernon defines a Domain Event as:

An occurrence of something that happened in the domain.

http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8


Domain-Events

[ 145 ]

Eric Evans defines a Domain Event as:

A full-fledged part of the Domain Model, a representation of something that
happened in the Domain. Ignore irrelevant Domain activity while making explicit
the events that the Domain Experts want to track or be notified of, or which are
associated with state change in the other Model objects.

Martin Fowler defines a Domain Event as something that:

    Captures the memory of something interesting which affects the Domain.

Examples of Domain Events in a web application are UserRegistered, OrderPlaced,
UserRelocated, and ProductAdded.

Short Story
In a ticket sales agency, a content manager decides to increase the price of a U2 show. Using
her back office, she edits the show. A ShowPriceChanged Domain Event is published and
persisted into the database with the new show price in the same transaction.

A batch process takes the Domain Event and queues it into RabbitMQ. The Domain Event
gets distributed in two queues: one for the same local Bounded Context, and another
remote one for Business Intelligence purposes.

In the first queue, a worker fetches the corresponding Show using the ID in the Event and
pushes it into an Elasticsearch server so that the user can see the new price when searching.
It could also update the new price in a different database table.

In the second queue, a worker inserts the information into a Logs Server or a Data Lake,
where reporting or Data Mining processes can be run.

An external application that can't be integrated using Domain Events could access all the
ShowPriceChanged Events using a REST API that the local Bounded Context provides.

As you can see, Domain Events are useful for dealing with eventual consistency and
integrating different Bounded Contexts. Aggregates create Events and publish them.
Subscribers may store Events and then forward them to remote subscribers.

https://domainlanguage.com/ddd/patterns/DDD_Reference_2011-01-31.pdf
http://martinfowler.com/eaaDev/DomainEvent.html


Domain-Events

[ 146 ]

Metaphor
We go to Babur's for a meal on Tuesday and pay by credit card. This might be modeled as
an Event with an Event type of PurchasePlaced, a subject of my credit card, and a date of
occurrence of Tuesday. If Babur's uses an old manual system and doesn't transmit the
transaction until Friday, the transaction would be effective on Friday.

Things happen. Not all of them are interesting, and some may be worth recording but don't
provoke a reaction. However, the most interesting things cause a reaction. Many systems 
need to react to interesting Events. Often you need to know why a system reacts in the way
it did.

By funneling inputs to a system into streams of Domain Events, you can keep a record of all
the inputs to a system. This helps you organize your processing logic, and it also allows you
to keep an audit log of the inputs to the system.

Exercise
Try to locate examples of potential Domain Events in your current
Domain.

Real-World Example
Before going into detail about Domain Events, let's see a real example of Domain Events
and how they can help us in our application and our whole Domain.

Let's consider a simple Application Service that will register a new user — for example, in
an e-commerce context. Application Services will be explained in another chapter, so don't
worry too much about the interface. Instead, just focus on the execute method:

class SignUpUserService implements ApplicationService
{
    private $userRepository;
    private $userFactory;
    private $userTransformer;

    public function __construct(
        UserRepository $userRepository,
        UserFactory $userFactory,
        UserTransformer $userTransformer
    ) {
        $this->userRepository = $userRepository;
        $this->userFactory = $userFactory;
        $this->userTransformer = $userTransformer;



Domain-Events

[ 147 ]

    }

    /**
     * @param SignUpUserRequest $request
     * @return User
     * @throws UserAlreadyExistsException
     */
    public function execute(SignUpUserRequest $request)
    {
        $email = $request->email();
        $password = $request->password();

        $user = $this->userRepository->userOfEmail($email );
        if ($user) {
            throw new UserAlreadyExistsException();
        }

        $user = $this->userFactory->build(
            $this->userRepository->nextIdentity(),
            $email,
            $password
        );

        $this->userRepository->add($user);
        $this->userTransformer->write($user);
    }
}

As shown, the Application Service section checks if the user already exists. If not, it creates a
new User and adds it to the UserRepository.

Now consider an additional requirement: a new user must be notified by email when
registered. Without thinking about it too much, the first approach that comes to mind is to
update our Application Service to include a piece of code that would do the job — probably
some sort of EmailSender that would be run after the add method. However, let's consider
another approach.

What about firing a UserRegistered Event so that another component listening can react
and send that email? There are some cool benefits to this new approach. First of all, we
don't need to update the code of our Application Service every time a new action must be
performed when a new user is registered.

Second, it's easier to test. The Application Service remains simpler, and each time a new
action is developed, we just write the tests for the action.



Domain-Events

[ 148 ]

Later in the same e-commerce project, we're told to integrate an open source gamification
platform not written in PHP. Each time users place purchases or review products in our e-
commerce Bounded Context, they can get badges that can be shown on their e-commerce
user profile pages or be notified by email. How could we model the problem?

Following the first approach, we would update the Application Service to integrate with the
new platform in a fashion similar to the previous email confirmation approach. With the
Domain Event approach, we could create another listener for the UserRegistered Event,
which will connect directly, by REST or SOA, to the gamification platform. Even better, it
could communicate the Event to a messaging system like RabbitMQ so that the gamification
Bounded Context can subscribe and get notified automatically. Our e-commerce Bounded
Context doesn't need to know about the gamification Bounded Context at all.

Characteristics
Domain Events are ordinarily immutable, as they're a record of something in the past. In
addition to a description of the Event, a Domain Event typically contains a timestamp for
the time the Event occurred and the identity of Entities involved in the Event. Additionally,
a Domain Event often has a separate timestamp indicating when the Event was entered into
the system, along with the identity of the person who entered it. When useful, an identity
for the Domain Event can be based on some set of these properties. So, for example, if two
instances of the same Event arrive at a node, they can be recognized as the same.

The essence of a Domain Event is that you use it to capture things that can trigger a change
to the state of the application you're developing or to another application in your Domain
that's interested in those changes. These Event objects are then processed to cause changes
to the system and stored to provide an audit log.

Naming Conventions
All Events should be represented as verbs in the past tense, as they're things that have been
completed in the past — for example, CustomerRelocated, CargoShipped, or
InventoryLossageRecorded. There are interesting examples in the English language
where one may be tempted to use nouns as opposed to verbs in the past tense; an example
of this would be Earthquake or Capsize as relevant Events for a congressperson interested in
natural disasters. We suggest avoiding the temptation of using names like those for Domain
Events and sticking with verbs in the past tense.



Domain-Events

[ 149 ]

Domain Events and Ubiquitous Language
Consider the differences in the Ubiquitous Language when we discuss the side effects of
relocating a customer. The Event makes the concept explicit, whereas previously, the
changes that occurred within an Aggregate or between multiple Aggregates were left as an
implicit concept that needed to be explored and defined. As an example, in most systems,
when a side effect occurs on a library like Hibernate or the Entity Framework, it doesn't
affect the Domain. These Events are implicit and transparent from the client point of view.
The introduction of the Event makes the concept explicit and part of the Ubiquitous
Language. Relocating a customer doesn't just change some stuff; rather it produces a
CustomerRelocatedEvent that is explicitly defined within the language.

Immutability
As we mentioned already, Domain Events talk about the past and describe changes in your
Domain that have already occurred. By definition, it's impossible to change the past, unless
you're Marty McFly and have a DeLorean, which is probably not the case. So just remember
that Domain Events are immutable.

Symfony Event Dispatcher
Some PHP frameworks support Events. However, don't confuse those
Events with Domain Events; they're different in characteristics and goals.
For example, Symfony has the Event Dispatcher component, and if you
need to implement an Event system for a state machine, you can rely on it.
In Symfony, the transformation from requests to responses is handled by
Events too. However, Symfony Events are mutable, and each of the
listeners is capable of modifying, adding to, or updating the information
in the Event.

Modeling Events
In order to describe your business Domain accurately, you'll have to work closely with
Domain Experts and define the Ubiquitous Language. This requires crafting Domain
concepts using Domain Events, Entities, Value Objects, and so on. When modeling Events,
name them and their properties according to the Ubiquitous Language, in the Bounded
Context where they originated. If an Event is the result of executing a command operation
on an Aggregate, the name is usually derived from the command that was executed. It's
important that the Event name reflects the past nature of the occurrence.



Domain-Events

[ 150 ]

Let's consider our user registration feature; the Domain Event needs to represent it. The
following code shows a minimal interface for a base Domain Event:

interface DomainEvent
{
    /**
     * @return DateTimeImmutable
     */
     public function occurredOn();
}

As you can see, the minimum information required is a DateTimeImmutable, which is
necessary in order to know when the Event happened.

Now let's model the new user registration Event using the following code. As we
mentioned above, the name should be a verb in the past tense, so UserRegistered is
probably a good choice:

class UserRegistered implements DomainEvent
{
    private $userId;

    public function __construct(UserId $userId)
    {
        $this->userId = $userId;
        $this->occurredOn = new \DateTimeImmutable();
    }

    public function userId()
    {
        return $this->userId;
    }

    public function occurredOn()
    {
        return $this->occurredOn;
    }
}

The minimum amount of information required to notify subscribers about the creation of
new users is the UserId. With this information, any process, command, or Application
Service — from either the same Bounded Context or a different one — may react to this
Event.



Domain-Events

[ 151 ]

As a Rule of Thumb

Domain Events are usually designed as immutable
The Constructor will initialize the full state of the Domain
Event.
Domain Events will have getters to access their attributes
Include the identity of the Aggregate that performs the action
Include other Aggregate identities related to the first one
Include parameters that caused the Event (if useful)

But what happens if your Domain experts from the same Bounded Context or a different
one need more information? Let's see the same Domain Event modeled with more
information — for example, the email address:

class UserRegistered implements DomainEvent
{
    private $userId;
    private $userEmail ;

    public function __construct(UserId $userId, $userEmail)
    {
        $this-> userId = $userId;
        $this->userEmail = $userEmail ;
        $this->occurredOn = new DateTimeImmutable();
    }

    public function userId()
    {
        return $this->userId;
    }

    public function userEmail ()
    {
        return $this->userEmail ;
    }

    public function occurredOn()
    {
        return $this->occurredOn;
    }
}



Domain-Events

[ 152 ]

Above, we've added the email address. Adding more information to a Domain Event can
help improve performance or simplify the integration between different Bounded Contexts.
Thinking from the point of view of another Bounded Context could help modeling Events.
When a new user is created in the upstream Bounded Context, the downstream one would
have to create its own user. Adding the user email could possibly save a sync request to the
upstream Bounded Context in the case the downstream one needed it.

Do you remember the gamification example? In order to create a user of the gamification
platform, probably called Player, the UserId from the e-commerce Bounded Context was
probably enough. But what happens if the gamification platform has to notify the users by
email about being rewarded? In this case, the email address is also mandatory. So if the
email address is included in the original Domain Event, we're done. If that's not the case,
the gamification Bounded Context needs to request this information from the e-commerce
Bounded Context via REST or SOA integration.

Why Not the Whole User Entity?
Wondering if you should include the whole User Entity from your
Bounded Context in the Domain Event? Our suggestion is that you don't.
Domain Events might be used to communicate messages internally to a
given Bounded Context or externally to other Bounded Contexts. In other
words, what can be a Seller in a C2C e-commerce product catalog
Bounded Context can be an Author of a product review in a product
feedback one. Both can share the same ID or email, but Seller and
Author are different concepts representing different Entities from
different Bounded Contexts. So Entities from one Bounded Context have
no meaning or a totally different one in another Bounded Context.

Doctrine Events
Domain Events are not just for doing batch jobs such as sending emails or communicating
to other Bounded Contexts; they're also interesting for performance and scalability
improvements. Let's see an example.

Consider the following scenario. You have an e-commerce application. Your main
persistence mechanism is MySQL, but for browsing and filtering your catalog, you're using
a better approach, such as Elasticsearch or Solr. On Elasticsearch, you'll end up with a
subset of the information stored in your full database. How do you keep the data in sync?
What happens when the Content Team updates the catalog from the back office tool?



Domain-Events

[ 153 ]

There have been people re-indexing the entire catalog from time to time. This is very
expensive and slow. A smarter approach may be updating one or some of the documents
related to the Product that has been updated. How can we do that? Using Domain Events.

However, if you've been working with Doctrine, this is likely not something that's new to
you. According to the Doctrine 2 ORM 2 Documentation:

Doctrine 2 features a lightweight event system that is part of the Common
package. Doctrine uses it to dispatch system events, mainly life cycle events. You
can also use it for your own custom events.

Furthermore, it states that:

Life cycle Callbacks are defined on an entity class. They allow you to trigger
callbacks whenever an instance of that entity class experiences a relevant life cycle
event. More than one callback can be defined for each life cycle event. Life cycle
Callbacks are best used for simple operations specific to a particular entity class's
life cycle.

Let's see an example from the Doctrine Events Documentation:

/** @Entity @HasLifecycleCallbacks */
class User
{
    // ...

   /**
    * @Column(type="string", length=255)
    */
    public $value;

    /** @Column(name="created_at", type="string", length=255) */
    private $createdAt;

    /** @PrePersist */
    public function doStuffOnPrePersist()
    {
        $this->createdAt = date('Y-m-d H:i:s');
    }

    /** @PrePersist */
    public function doOtherStuffOnPrePersist()
    {
        $this-> value = 'changed from prePersist callback!';
    }

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#events
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#lifecycle-callbacks
http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/events.html


Domain-Events

[ 154 ]

    /** @PostPersist */
    public function doStuffOnPostPersist()
    {
        $this->value = 'changed from postPersist callback!';
    }

    /** @PostLoad */
    public function doStuffOnPostLoad()
    {
        $this->value = 'changed from postLoad callback!';
    }

    /** @PreUpdate */
    public function doStuffOnPreUpdate()
    {
        $this->value = 'changed from preUpdate callback!';
    }
}

You can hook specific tasks on each different important moment in the Doctrine Entity life
cycle. For example, on PostPersist, you can generate the JSON document of your Entity
and put it into Elasticsearch. That way, it's easy to keep data consistent between different
persistence mechanisms.

Doctrine Events are a good example of the benefits of Events around your Entities. But you
may be wondering what the problem with them is. This is because they're coupled to a
framework, they're synchronous, and they act on your application level, but not for
communication purposes. So that's why Domain Events, despite being a bit more difficult to
implement and handle, are so much more interesting.

Persisting Domain Events
Persisting Events is always a good idea. Some of you may be wondering why you shouldn't
publish Domain Events directly to a messaging or logging system. This is because persisting
them has interesting benefits:

You can expose your Domain Events to other Bounded Contexts through a REST
interface.
You can persist the Domain Event and the Aggregate changes in the same
database transaction before pushing them to RabbitMQ. (You don't want to send
notifications about something that didn't happen, just as you don't want to miss a
notification about something that did happen.)



Domain-Events

[ 155 ]

Business Intelligence can use this data to analyze, forecast, or trend.
You can audit your Entity changes.
For Event Sourcing, you can reconstitute Aggregates from Domain Events.

Event Store
Where do we persist Domain Events? In an Event Store. An Event Store is a Domain Event
Repository that lives in our Domain space as an abstraction (interface or abstract class). Its
responsibility is to append Domain Events and query them. A possible basic interface could
be the following:

interface EventStore
{
    public function append(DomainEvent $aDomainEvent);
    public function allStoredEventsSince($anEventId);
}

However, depending on the usage of your Domain Events, the previous interface can have
more methods to query your Events.

In terms of implementation, you can decide to use a Doctrine Repository, a DBAL one, or a
plain PDO. Because Domain Events are immutable, using a Doctrine Repository adds an
unnecessary performance penalty, though for a small to medium application, Doctrine is
probably OK. Let's look at a possible implementation with Doctrine:

class DoctrineEventStore extends EntityRepository implements EventStore
{
    private $serializer;

    public function append(DomainEvent $aDomainEvent)
    {
        $storedEvent = new StoredEvent(
            get_class($aDomainEvent),
            $aDomainEvent->occurredOn(),
            $this->serializer()->serialize($aDomainEvent, 'json')
        );

        $this->getEntityManager()->persist($storedEvent);
     }

     public function allStoredEventsSince($anEventId)
     {
         $query = $this->createQueryBuilder('e');
         if ($anEventId) {



Domain-Events

[ 156 ]

             $query->where('e.eventId > :eventId');
             $query->setParameters(['eventId' => $anEventId]);
         }
         $query->orderBy('e.eventId');

         return $query->getQuery()->getResult();
     }

     private function serializer()
     {
         if (null === $this->serializer) {
             /** \JMS\Serializer\Serializer\SerializerBuilder */
             $this->serializer = SerializerBuilder::create()->build();
         }

         return $this->serializer;
     }
 }

StoredEvent is the Doctrine Entity needed to map to the database. As you may have seen,
when appending and after persisting the Store, there's no flush call. If this operation is
inside a Doctrine transaction, it's not needed. So, let's leave it without the call and we'll go
into more details when talking about Application Services.

Now let's see the StoredEvent implementation:

class StoredEvent implements DomainEvent
{
    private $eventId;
    private $eventBody;
    private $occurredOn;
    private $typeName;

    /**
     * @param string $aTypeName
     * @param \DateTimeImmutable $anOccurredOn
     * @param string $anEventBody
     */
    public function __construct(
        $aTypeName, \DateTimeImmutable $anOccurredOn, $anEventBody
    ) {
        $this->eventBody = $anEventBody;
        $this->typeName = $aTypeName;
        $this->occurredOn = $anOccurredOn;
    }

    public function eventBody()
    {



Domain-Events

[ 157 ]

        return $this->eventBody;
    }

    public function eventId()
    {
        return $this->eventId;
    }

    public function typeName()
    {
        return $this->typeName;
    }

    public function occurredOn()
    {
        return $this->occurredOn;
    }
}

And here is its mapping:

Ddd\Domain\Event\StoredEvent:
    type: entity
    table: event
    repositoryClass:
        Ddd\Infrastructure\Application\Notification\DoctrineEventStore
    id:
        eventId:
            type: integer
            column: event_id
            generator:
            strategy: AUTO
    fields:
        eventBody:
            column: event_body
            type: text
        typeName:
            column: type_name
            type: string
            length: 255
        occurredOn:
            column: occurred_on
            type: datetime

In order to persist Domain Events with different fields, we'll have to join those fields as a
serialized string. typeName identifies the Domain-wide Domain Event. An Entity or Value
Object makes sense inside a Bounded Context, but Domain Events define a communication
protocol between Bounded Contexts.



Domain-Events

[ 158 ]

In distributed systems, shit happens. You'll have to deal with Domain Events that aren't
published, are lost somewhere in the chain, or are published more than once. That's why it's
important to persist a Domain Event with an ID, so that it's easy to track which Domain
Events have been published and which are missing.

Publishing Events from the Domain Model
Domain Events should be published when the fact they represent occurs. For instance,
when a new user has been registered, a new UserRegistered Event should be published.

Following the newspaper metaphor:

Modeling a Domain Event is like writing a news article
Publishing a Domain Event is like printing the article in the paper
Spreading a Domain Event is like delivering the newspaper so everyone can read
the article

The recommended approach for publishing Domain Events is to use a simple Listener-
Observer pattern to implement a DomainEventPublisher.

Publishing a Domain Event from an Entity
Continuing with the example of a new user who has been registered in our application, let's
see how the corresponding Domain Event can be published:

class User
{
    protected $userId;
    protected $email ;
    protected $password;

    public function __construct(UserId $userId, $email, $password)
    {
        $this->setUserId($userId);
        $this->setEmail($email);
        $this->setPassword($password);

        DomainEventPublisher::instance()->publish(
            new UserRegistered($this->userId)
        );
    }



Domain-Events

[ 159 ]

    // ...
}

As seen in the example, when the User is created, a new UserRegistered Event is
published. It's done in the Entity constructor and not outside because, with this approach,
it's easier to keep our Domain consistent; any client who creates a new User will publish its
corresponding Event. On the other hand, this makes it a bit more complex to use an
infrastructure that needs to create a User Entity without using its constructor. For example,
Doctrine uses the serialize and unserialize technique that recreates an object without
calling its constructor. However, if you have to create your own, this isn't going to be as
easy as in Doctrine.

In general, constructing an object from plain data such as an array is called hydration. Let's
see an easy approach to building a new User fetched from a database. First of all, let's
extract the Domain Event publication to its own method by applying the Factory Method
pattern.

According to Wikipedia:

The template method pattern is a behavioral design pattern that defines
the program skeleton of an algorithm in an operation, deferring some
steps to subclasses:

class User
{
    protected $userId;
    protected $email ;
    protected $password;

    public function __construct(UserId $userId, $email, $password)
    {
        $this->setUserId($userId);
        $this->setEmail($email);
        $this->setPassword($password);
        $this->publishEvent();

    }

    protected function publishEvent()
    {
        DomainEventPublisher::instance()->publish(
            new UserRegistered($this->userId)
        );
    }

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern
https://en.wikipedia.org/wiki/Template_method_pattern


Domain-Events

[ 160 ]

    // ...
}

Now, let's extend our current User with a new infrastructure Entity that will do the job for
us. The trick here is make publishEvent do nothing so that the Domain Event isn't
published:

class CustomOrmUser extends User
{
    protected function publishEvent()
    {

    }

    public static function fromRawData($data)
    {
        return new self(
            new UserId($data['user_id']),
            $data['email'],
            $data['password']
        );
    }
}

Remember to be careful with this approach; you might fetch invalid objects from the
persistence mechanism, as Domain rules change all the time. Another approach without
using the parent constructor could be the following:

class CustomOrmUser extends User
{
    public function __construct()
    {
    }

    public static function fromRawData($data)
    {
        $user = new self();
        $user->userId = new UserId($data['user_id']);
        $user->email = $data['email'];
        $user->password = $data['password'];

        return $user;
    }
}



Domain-Events

[ 161 ]

With this approach, the parent constructor isn't called and User attributes must be
protected. Other alternatives are Reflection, passing flags in the constructor, using a proxy
library like Proxy-Manager, or using an ORM like Doctrine.

Other Strategy for Publishing Domain Events
As you can see in the previous example, we're using a static class for
publishing our Domain Events. Other people, as an alternative, and
especially when using Event Sourcing, will suggest that Entities hold all
the fired Events internally within a field. In order to access all the Events, a
getter is used in the Aggregate. This is also a valid approach. However,
sometimes it's a bit difficult to keep track of which Entities have fired an
Event. It can also be difficult to fire Events from places that aren't just
Entities, example: Domain Services. On the plus side, testing if an Entity
has fired an Event is much easier.

Publishing your Domain Events from Domain or
Application Services
You should struggle to publish Domain Events from deeper in the chain. The closer to the 
inside of the Entity or the Value Object, the better. As we saw in the previous section,
sometimes this isn't easy, but the final result is simpler for the clients. We've seen
developers publishing Domain Events from the Application Services or Domain Services.
This looks easier to do, but it will eventually lead to an Anemic Domain Model. This is not
unlike when pushing business logic in Domain Services instead of placing it into your
Entities.

How the Domain Event Publisher Works
A Domain Event Publisher is a Singleton class available from our Bounded Context needed
to publish Domain Events. It also has support to attach listeners — Domain Event
Subscribers — that will be listening for any Domain Event they're interested in. This isn't
much different from subscribing to an Event with jQuery using the on method:

class DomainEventPublisher
{
    private $subscribers;
    private static $instance = null;

    public static function instance()
    {

https://packagist.org/packages/ocramius/proxy-manager
http://martinfowler.com/eaaDev/EventSourcing.html


Domain-Events

[ 162 ]

        if (null === static::$instance) {
            static::$instance = new static();
        }

        return static::$instance;
    }

    private function __construct()
    {
        $this->subscribers = [];
    }

    public function __clone()
    {
        throw new BadMethodCallException('Clone is not supported');
    }

    public function subscribe(
        DomainEventSubscriber $aDomainEventSubscriber
    ) {
        $this->subscribers[] = $aDomainEventSubscriber;
    }

    public function publish(DomainEvent $anEvent)
    {
        foreach ($this->subscribers as $aSubscriber) {
           if ($aSubscriber->isSubscribedTo($anEvent)) {
               $aSubscriber->handle($anEvent);
           }
        }
    }
}

The publish method goes through all the possible subscribers, checking if they're
interested in the published Domain Event. If that's the case, the handle method of the
subscriber is called.

The subscribe method adds a new DomainEventSubscriber that will be listening to
specific Domain Event types:

interface DomainEventSubscriber
{
    /**
     * @param DomainEvent $aDomainEvent
     */
    public function handle($aDomainEvent);

    /**



Domain-Events

[ 163 ]

     * @param DomainEvent $aDomainEvent
     * @return bool
     */
    public function isSubscribedTo($aDomainEvent);
}

As we've already discussed, persisting all the Domain Events is a great idea. We can easily
persist all the Domain Events published in our app by using a specific subscriber. Let's
create a DomainEventSubscriber that will listen to all Domain Events, no matter what
type, and persist them using our EventStore:

class PersistDomainEventSubscriber implements DomainEventSubscriber
{
    private $eventStore;

    public function __construct(EventStore $anEventStore)
    {
        $this->eventStore = $anEventStore;
    }

    public function handle($aDomainEvent)
    {
        $this->eventStore->append($aDomainEvent);
    }

    public function isSubscribedTo($aDomainEvent)
    {
        return true;
    }
}

$eventStore could be a custom Doctrine Repository, as already seen, or any other object
capable of persisting DomainEvents into a database.

Setting Up DomainEventListeners
Where's the best place to set up the subscribers to the DomainEventPublisher? It
depends. For global subscribers that will potentially affect the entire request cycle, the best
place might be on the DomainEventPublisher initialization itself. For subscribers affected
by a specific Application Service, the service instantiation might be a better place. Let's see
an example using Silex.



Domain-Events

[ 164 ]

In Silex, the best way to register a Domain Event Publisher that will persist all Domain
Events is by using an Application Middleware. According to the Silex 2.0
Documentation:

A before application middleware allows you to tweak the Request before the
controller is executed.

This is the correct place to subscribe the listener responsible for persisting to the database
those Events that will be sent to RabbitMQ later:

// ...
$app['em'] = $app-> share(function () {
    return (new EntityManagerFactory())->build();
});

$app['event_repository'] = $app->share(function ($app) {
    return $app['em']->getRepository(
        'Ddd\Domain\Model\Event\StoredEvent'
    );
});

$app['event_publisher'] = $app->share(function($app) {
    return DomainEventPublisher::instance();
});

$app->before(
    function(Symfony\Component\HttpFoundation\Request $request)
        use($app) {

        $app['event_publisher']->subscribe(
            new PersistDomainEventSubscriber(
                $app['event_repository']
            )
        );
    }
);

With this setup, each time an Aggregate publishes a Domain Event, it will get persisted into
the database. Mission accomplished.

Exercise
If you're working with Symfony, Laravel, or another PHP framework, find
a way to subscribe globally specific subscribers for performing tasks
around your Domain Events.

http://silex.sensiolabs.org/
http://silex.sensiolabs.org/doc/master/middlewares.html
http://silex.sensiolabs.org/doc/master/middlewares.html


Domain-Events

[ 165 ]

In case you want to perform any action on all Domain Events when the request is about to
finish, you can create a Listener that will store all published Domain Events in memory. If
you add a getter to that Listener to return all Domain Events, you can then decide what to
do. This can be useful if you don't want to or if you can't persist the Events in the same
transaction, as suggested before.

Testing Domain Events
You already know how to publish Domain Events, but how can you unit test this and
ensure that UserRegistered is really fired? The easiest way we suggest is to use a specific
EventListener that will work as a Spy to record whether or not the Domain Event was
published. Let's see an example of the User Entity unit test:

use Ddd\Domain\DomainEventPublisher;
use Ddd\Domain\DomainEventSubscriber;

class UserTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function itShouldPublishUserRegisteredEvent()
    {
        $subscriber = new SpySubscriber();
        $id = DomainEventPublisher::instance()->subscribe($subscriber);

        $userId = new UserId();
        new User($userId, 'valid@email.com', 'password');
        DomainEventPublisher::instance()->unsubscribe($id);

        $this->assertUserRegisteredEventPublished($subscriber,$userId);
    }

    private function assertUserRegisteredEventPublished(
        $subscriber, $userId
    ) {
        $this->assertInstanceOf(
            'UserRegistered', $subscriber->domainEvent
        );
        $this->assertTrue(
            $subscriber->domainEvent->serId()->equals($userId)
        );
    }

http://www.martinfowler.com/bliki/TestDouble.html


Domain-Events

[ 166 ]

}

class SpySubscriber implements DomainEventSubscriber
{
    public $domainEvent;

    public function handle($aDomainEvent)
    {
        $this->domainEvent = $aDomainEvent;
    }

    public function isSubscribedTo($aDomainEvent)
    {
        return true;
    }
}

There are some alternatives to the above. You could use a static setter for the
DomainEventPublisher or some reflection framework to detect the call. However, we
think the approach we've shared is more natural. Last but not least, remember to clean up
the Spy subscription so it won't affect the execution of the rest of the unit tests.

Spreading the news to Remote Bounded
Contexts
In order to communicate a set of Domain Events to local or remote Bounded Contexts, there
are two main strategies: messaging and a REST API. The first plans to use a messaging
system such as RabbitMQ to transmit the Domain Events. The second plans to create a
REST API for accessing the Domain Events of a specific Bounded Context.

Messaging
With all Domain Events persisted into the database, the only thing remaining to spread the
news is to push them to our favorite messaging system. We prefer RabbitMQ, but any other
system, such as ActiveMQ or ZeroMQ, will do the job. For integrating with RabbitMQ
using PHP, there aren't many options, but php-amqplib will do the work.

https://www.rabbitmq.com
https://packagist.org/packages/php-amqplib/php-amqplib


Domain-Events

[ 167 ]

First of all, we need a service capable of sending persisted Domain Events to RabbitMQ.
You may want to query EventStore for all the Events and send each one, which isn't a bad
idea. However, we could push the same Domain Event more than once, and generally
speaking, we need to minimize the number of Domain Events republished. If the number of
Domain Events republished is 0, that's even better. In order to not republish Domain
Events, we need some sort of component to track which Domain Events have already been
pushed and which ones are remaining. Last but not least, once we know which Domain
Events we have to push, we send them and keep track of the last one published into our
messaging system. Let's see a possible implementation for this service:

class NotificationService
{
    private $serializer;
    private $eventStore;
    private $publishedMessageTracker;
    private $messageProducer;

    public function __construct(
        EventStore $anEventStore,
        PublishedMessageTracker $aPublishedMessageTracker,
        MessageProducer $aMessageProducer,
        Serializer $aSerializer
    ) {
        $this->eventStore = $anEventStore;
        $this->publishedMessageTracker = $aPublishedMessageTracker;
        $this->messageProducer = $aMessageProducer;
        $this->serializer = $aSerializer;
    }

    /**
     * @return int
     */
    public function publishNotifications($exchangeName)
    {
        $publishedMessageTracker = $this->publishedMessageTracker();
        $notifications = $this->listUnpublishedNotifications(
            $publishedMessageTracker
                ->mostRecentPublishedMessageId($exchangeName)
        );

        if (!$notifications) {
            return 0;
        }

        $messageProducer = $this->messageProducer();
        $messageProducer->open($exchangeName);
        try {



Domain-Events

[ 168 ]

            $publishedMessages = 0;
            $lastPublishedNotification = null;
            foreach ($notifications as $notification) {
                $lastPublishedNotification = $this->publish(
                    $exchangeName,
                    $notification,
                    $messageProducer
                );
                $publishedMessages++;
            }
        } catch (\Exception $e) {
            // Log your error (trigger_error, Monolog, etc.)
        }

        $this->trackMostRecentPublishedMessage(
            $publishedMessageTracker,
            $exchangeName,
            $lastPublishedNotification
        );

        $messageProducer->close($exchangeName);

        return $publishedMessages;
    }

    protected function publishedMessageTracker()
    {
        return $this->publishedMessageTracker;
    }

    /**
     * @return StoredEvent[]
     */
    private function listUnpublishedNotifications(
        $mostRecentPublishedMessageId
    ) {
        return $this
            ->eventStore()
            ->allStoredEventsSince($mostRecentPublishedMessageId);
    }

    protected function eventStore()
    {
        return $this->eventStore;
    }

    private function messageProducer()
    {



Domain-Events

[ 169 ]

        return $this->messageProducer;
    }

    private function publish(
        $exchangeName,
        StoredEvent $notification,
        MessageProducer $messageProducer
    ) {
        $messageProducer->send(
            $exchangeName,
            $this->serializer()->serialize($notification, 'json'),
            $notification->typeName(),
            $notification->eventId(),
            $notification->occurredOn()
        );

        return $notification;
    }

    private function serializer()
    {
       return $this->serializer;
    }

    private function trackMostRecentPublishedMessage(
        PublishedMessageTracker $publishedMessageTracker,
        $exchangeName,
        $notification
    ) {
        $publishedMessageTracker->trackMostRecentPublishedMessage(
            $exchangeName, $notification
        );
    }
}

NotificationService depends on three interfaces. We've already seen EventStore,
which is responsible for appending and querying Domain Events. The second one is
PublishedMessageTracker, which is responsible for keeping track of pushed messages.
The third one is MessageProducer, an interface representing our messaging system:

interface PublishedMessageTracker
{
    /**
     * @param string $exchangeName
     * @return int
     */
    public function mostRecentPublishedMessageId($exchangeName);



Domain-Events

[ 170 ]

    /**
     * @param string $exchangeName
     * @param StoredEvent $notification
     */
    public function trackMostRecentPublishedMessage(
        $exchangeName, $notification
    );
}

The mostRecentPublishedMessageId method returns the ID of last PublishedMessage,
so that the process can start from the next one. trackMostRecentPublishedMessage is
responsible for tracking which message was sent last, in order to be able to republish
messages in case you need to. $exchangeName represents the communication channel
we're going to use to send out our Domain Events. Let's see a Doctrine implementation of
PublishedMessageTracker:

class DoctrinePublishedMessageTracker extends EntityRepository\
implements PublishedMessageTracker
{
    /**
     * @param $exchangeName
     * @return int
     */
    public function mostRecentPublishedMessageId($exchangeName)
    {
        $messageTracked = $this->findOneByExchangeName($exchangeName);
        if (!$messageTracked) {
            return null ;
        }

        return $messageTracked->mostRecentPublishedMessageId();
    }

    /**
     *@param $exchangeName
     * @param StoredEvent $notification
     */
    public function trackMostRecentPublishedMessage(
        $exchangeName, $notification
    ) {
        if(!$notification) {
            return;
        }

        $maxId = $notification->eventId();

        $publishedMessage= $this->findOneByExchangeName($exchangeName);



Domain-Events

[ 171 ]

        if(null === $publishedMessage){
            $publishedMessage = new PublishedMessage(
                $exchangeName,
                $maxId
            );
        }

        $publishedMessage->updateMostRecentPublishedMessageId($maxId);

        $this->getEntityManager()->persist($publishedMessage);
        $this->getEntityManager()->flush($publishedMessage);
    }
}

This code is quite straightforward. The only edge case we have to consider is when no
Domain Event has already been published.

Why an Exchange Name?
We'll see this in more detail in the Chpater 12, Integrating Bounded
Contexts. However, when a system is running and a new Bounded Context
comes into play, you might be interested in resending all the Domain
Events to the new Bounded Context. So keeping track of the last Domain
Event published and the channel where it was sent might come in handy
later.

In order to keep track of published Domain Events, we need an exchange name and a
notification ID. Here's a possible implementation:

class PublishedMessage
{
    private $mostRecentPublishedMessageId;
    private $trackerId;
    private $exchangeName;

    /**
     * @param string $exchangeName
     * @param int $aMostRecentPublishedMessageId
     */
    public function __construct(
        $exchangeName, $aMostRecentPublishedMessageId
    ) {
        $this->mostRecentPublishedMessageId =
            $aMostRecentPublishedMessageId;
        $this->exchangeName = $exchangeName;
    }

    public function mostRecentPublishedMessageId()



Domain-Events

[ 172 ]

    {
        return $this->mostRecentPublishedMessageId;
    }

    public function updateMostRecentPublishedMessageId($maxId)
    {
        $this->mostRecentPublishedMessageId = $maxId;
    }

    public function trackerId()
    {
        return $this->trackerId;
    }
}

And here is its corresponding mapping:

Ddd\Domain\Event\PublishedMessage:
    type: entity
    table: event_published_message_tracker
    repositoryClass:
        Ddd\Infrastructure\Application\Notification\
            DoctrinePublished\MessageTracker
    id:
        trackerId:
            column: tracker_id
            type: integer
            generator:
            strategy: AUTO
    fields:
        mostRecentPublishedMessageId:
            column: most_recent_published_message_id
            type: bigint
        exchangeName:
            type: string
            column: exchange_name

Now let's see what the MessageProducer interface is used for, along with its
implementation details:

interface MessageProducer
{
    public function open($exchangeName);

    /**
     * @param $exchangeName
     * @param string $notificationMessage
     * @param string $notificationType



Domain-Events

[ 173 ]

     * @param int $notificationId
     * @param \DateTimeImmutable $notificationOccurredOn
     * @return
     */
    public function send(
        $exchangeName,
        $notificationMessage,
        $notificationType,
        $notificationId,
        \DateTimeImmutable $notificationOccurredOn
    );

    public function close($exchangeName);
}

Easy. The open and close methods open and close a connection with the messaging system.
send takes a message body — message name and message ID — and sends them to our
messaging engine, whatever it is. Because we've chosen RabbitMQ, we need to implement
the connection and sending process:

abstract class RabbitMqMessaging
{
    protected $connection;
    protected $channel ;

    public function __construct(AMQPConnection $aConnection)
    {
        $this->connection =$aConnection;
        $this->channel = null ;
    }

    private function connect($exchangeName)
    {
        if (null !== $this->channel ) {
            return;
        }

        $channel = $this->connection->channel();
        $channel->exchange_declare(
            $exchangeName, 'fanout', false, true, false
        );
        $channel->queue_declare(
            $exchangeName, false, true, false, false
        );
        $channel->queue_bind($exchangeName, $exchangeName);

        $this->channel = $channel ;
    }



Domain-Events

[ 174 ]

    public function open($exchangeName)
    {

    }

    protected function channel ($exchangeName)
    {
        $this->connect($exchangeName);

        return $this->channel;
    }

    public function close($exchangeName)
    {
        $this->channel->close();
        $this->connection->close();
    }
}

class RabbitMqMessageProducer
    extends RabbitMqMessaging
    implements MessageProducer
{
    /**
     * @param $exchangeName
     * @param string $notificationMessage
     * @param string $notificationType
     * @param int $notificationId
     * @param \DateTimeImmutable $notificationOccurredOn
     */
    public function send(
        $exchangeName,
        $notificationMessage,
        $notificationType,
        $notificationId,
        \DateTimeImmutable $notificationOccurredOn
    ) {
        $this->channel ($exchangeName)->basic_publish(
            new AMQPMessage(
                $notificationMessage,
                [
                  'type'=>$notificationType,
                  'timestamp'=>$notificationOccurredOn->getTimestamp(),
                  'message_id'=>$notificationId
                ]
            ),
            $exchangeName
        );



Domain-Events

[ 175 ]

    }
}

Now that we have a DomainService for pushing Domain Events into a messaging system
like RabbitMQ, it's time to execute them. We need to choose a delivery mechanism to run
the service. We personally suggest creating a Symfony Console Command:

class PushNotificationsCommand extends Command
{
    protected function configure()
    {
        $this
            ->setName('domain:events:spread')
            ->setDescription('Notify all domain events via messaging')
            ->addArgument(
                'exchange-name',
                InputArgument::OPTIONAL,
                'Exchange name to publish events to',
                'my-bc-app'
            );
    }

    protected function execute(
        InputInterface $input, OutputInterface $output
    ) {
        $app = $this->getApplication()->getContainer();

        $numberOfNotifications =
            $app['notification_service']
                ->publishNotifications(
                    $input->getArgument('exchange-name')
                );

        $output->writeln(
            sprintf(
                '<comment>%d</comment>' .
                '<info>notification(s) sent!</info>',
                $numberOfNotifications
            )
        );
    }
}

Following the Silex example, let's see the definition of the
$app['notification_service'] defined in the Silex Pimple Service Container:

 // ...
 $app['event_store']=$app->share( function ($app) {

http://symfony.com/doc/current/components/console/introduction.html
http://silex.sensiolabs.org/doc/services.html#id1


Domain-Events

[ 176 ]

     return $app['em']->getRepository('Ddd\Domain\Event\StoredEvent');
 });

$app['message_tracker'] = $app->share(function($app) {
    return $app['em']
        ->getRepository('Ddd\Domain\Event\Published\Message');
});

$app['message_producer'] = $app->share(function () {
    return new RabbitMqMessageProducer(
       new AMQPStreamConnection('localhost', 5672, 'guest', 'guest')
    );
});

$app['message_serializer'] = $app->share(function () {
    return SerializerBuilder::create()->build();
});

$app['notification_service'] = $app->share(function ($app) {
    return new NotificationService(
       $app['event_store'],
       $app['message_tracker'],
       $app['message_producer'],
       $app['message_serializer']
    );
});
//...

Syncing Domain Services with REST
With the EventStore already implemented in the messaging system, it should be easy to
add some pagination capabilities, query for Domain Events, and render a JSON or XML
representation publishing a REST API. Why is that interesting? Well, distributed systems 
using messaging have to face many different problems, such as messages that don't arrive,
messages that arrive duplicated, or messages that arrive in an unexpected order. That's why
it's nice to provide an API to publish your Domain Events so that other Bounded Contexts
can ask for some missing information. Just as an example, consider that you make an HTTP
request to an /events endpoint. A possible result would be the following:

[
    {
        "id": 1,
        "version": 1,
        "typeName": "Lw\\Domain\\Model\\User\\UserRegistered",
        "eventBody": {



Domain-Events

[ 177 ]

            "user_id": {
                "id": "459a4ffc-cd57-4cf0-b3a2-0f2ccbc48234"
            }
        },
        "occurredOn": {
            "date": "2016-05-26 06:06:07.000000",
            "timezone_type": 3,
            "timezone": "UTC"
        }
    },
    {
        "id": 2,
        "version": 2,
        "typeName": "Lw\\Domain\\Model\\Wish\\WishWasMade",
        "eventBody": {
            "wish_id": {
                "id": "9e90435a-395c-46b0-b4c4-d4b769cbf201"
            },
            "user_id": {
                "id": "459a4ffc-cd57-4cf0-b3a2-0f2ccbc48234"
            },
            "address": "john@example.com",
            "content": "This is my new wish!"
        },
        "occurredOn": {
            "date": "2016-05-26 06:06:27.000000",
            "timezone_type": 3,
            "timezone": "UTC"
        },
        "timeTaken": "650"
    },
    //...
]

As you can see in the previous example, we're exposing a set of Domain Events in a JSON
REST API. In the output example, you can see a JSON representation of each of the Domain
Events. There are some interesting points. First, the version field. Sometimes your Domain
Events will evolve: they'll include more fields, they'll change the behavior of some existing
fields, or they'll remove some existing fields. That's why it's important to add a version field
in your Domain Events. If other Bounded Contexts are listening to such Events, they can
use the version field to parse the Domain Event in different ways. You may have faced the
same problem when versioning REST APIs.



Domain-Events

[ 178 ]

Another point is the name. If you want to use the classname of the Domain Event, it may
work in most cases. The problem is when a team decides to change the name of the class
because of a refactoring. In this case, all Bounded Contexts listening to that name would
stop working. This problem only occurs if you publish different Domain Events in the same
queue. If you publish each Domain Event type in a different queue, it's not a real problem,
but if you choose this approach, you'll face a different set of problems, such as receiving
unordered events. Like in many other instances, there's a tradeoff involved. We strongly
recommend you read Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. In this book, you'll learn different patterns for integrating multiple
applications using asynchronous methods. Because Domain Events are messages sent in an
integration channel, all messaging patterns also apply to them.

Exercise
Think about the pros and cons of having a REST API for Domain Events.
Consider Bounded Context coupling. You can also try to implement a
REST API for your current application.

Wrap-Up
We've seen the tricks to model a proper DomainEvent with a base interface, we've seen
where to publish the DomainEvent (the nearer to the Entities the better), and we've seen the
strategies for spreading those DomainEvents to local and remote Bounded Contexts. Now,
the only thing remaining is listening for a notification in the messaging system, reading it,
and executing the corresponding Application Service or Command. We'll see how to do this
in Chapter 12, Integrating Bounded Contexts and Chapter 5, Services.

http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E


7
Modules

When you place some classes together in a Module, you are telling the next developer who looks
at your design to think about them together. If your model is telling a story, the Modules are

chapters.
               Domain-Driven Design:Tackling Complexity in the Heart of Software
                                                                                                                                  -Eric Evans 

                                                                                                                                      

A common concern when building an Application following Domain-Driven Design is
where to place the code. Specifically if you're using a PHP framework, it's important to
know the recommended way to place the code, where to place Infrastructure code, and how
the different concepts inside the model should be structured.

In Domain-Driven Design, there's a tactical pattern for this: modules. Nowadays, everyone
structures code in modules. All languages have some sort of tool to group classes and
language definitions together. Java has packages. Ruby has modules. PHP has namespaces.

Domain-Driven Design goes one step further toward packaging and grouping your classes
together and gives semantic meaning to these building blocks. Indeed, it treats modules as
a part of the model. As part of the model, it's important to find the best naming, group
together Domain objects that are close to each other, and keep the Domain objects that
aren't related decoupled. Modules should not be treated as a way to separate code but as a
way to separate meaningful concepts in the model.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Modules

[ 180 ]

General Overview
As explained in the chapter 1, Getting Started with Domain-Driven Design, our Domain is
organized internally into Subdomains. Each Subdomain is ideally modeled and
implemented by one Bounded Context, but sometimes more than one is needed. If well
designed, each Bounded Context is an independent system that will be developed and
managed by a team. Our suggestion is to implement each Bounded Context with a whole
Application. This means that two Bounded Contexts won't live in the same code Repository.
As such, they can be deployed independently, have a different development cycle, or even
be developed using different languages. Inside your Bounded Contexts, you'll use modules
to group Domain objects that hold a strong relation to one another.

Leverage Modules in PHP
Until PHP 5.3, modules weren't fully supported. But since the introduction of PHP 5.3, we
can use PHP namespaces to implement the module pattern. For historical reasons, we're
going to present how namespaces were used before PHP 5.3, but you should strive to use a
PHP version that supports PHP namespaces. The best choice is always going to be the latest
stable version of PHP.

First-Level Namespacing
A common approach is to use a first-level namespace that identifies your company. This
will help in avoiding conflicts with third-party libraries. If you're using PSR-0, you'll have a
real folder for the namespace; if you're using PSR-4, you don't need it. We'll go deeper into
this shortly. But first, let's take a look at the PHP namespacing conventions.

PEAR-Style Namespacing
Before PHP 5.3, due to the lack of a namespace construction, PEAR-style namespaces were
used. PEAR is an acronym for PHP Extension and Application Repository, and in the good
old days, it was a Repository of reusable components. It's still active, but it's not very
convenient, and not many people use it anymore — particularly since Composer and
Packagist were introduced. PEAR, as a source of reusable components, needed a way to
avoid class name collisions, so contributors started prefixing class names with namespaces.
There are still projects that use this form of namespaces (PHPUnit and Zend Framework 1,
to name a couple). An example of PEAR-style namespaces:



Modules

[ 181 ]

The following would be an example of PEAR-style namespaces:

                  

The class name for the Bill entity, using PEAR-style namespaces, would become
BuyIt_Billing_Domain_Model_Bill_Bill. However, this is a bit ugly, and it doesn't
follow one of the main Domain-Driven Design mantras: every class name should be named
in terms of the Ubiquitous Language. For this reason, we strongly discourage its use.

PSR-0 and PSR-4 Namespacing
Namespaces entered the scene when PHP 5.3 was introduced, along with other important
features. This was a major shift, and a group of the most important framework collaborators
emerged with PHP-FIG, an acronym of PHP Framework Interop Group, in an attempt to
standardize and unify common aspects of the framework and library creation. The first
PHP Standard Recommendation (PSR) the group released was an autoloading standard
that, in short, proposed a one-to-one relation between a class and a PHP file using
namespaces. Today, PSR-4 — a simplification of PSR-0 that still maintains the relation
between classes and physical PHP files — is the preferred and recommended way to
structure code. We believe that this should be the one used to implement modules in a
project.

Referring back to the same folder structure shown in the previous section, let's see what
changes with PSR-0. The class name for the Bill Entity, using namespaces and PSR-0, would
simply become Bill, and the fully qualified class name would be
BuyIt\Billing\Domain\Model\Bill\Bill.

http://www.php-fig.org/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/


Modules

[ 182 ]

As you can see, this enables us to name Domain objects in terms of the Ubiquitous
Language, and this is the preferred way to structure and organize code. If you're using
Composer, as you should be doing, you need to set some autoloading configurations in
your composer.json file:

...
"autoload": {
    "psr-0": {
        "BuyIt\\": "src/BuyIt/"
    }
},
"autoload-dev": {
    "psr-0": {
        "BuyIt": "tests/BuyIt/"
    }
},
...

If you're not using PSR-4 or you haven't migrated from PSR-0 yet, we strongly recommend
doing so. You can get rid of the first-level namespace folder, and your code structure will
better match the Ubiquitous Language:

                      

However, in order to avoid the collision with third-party libraries, it's still recommended to
add the first-level namespace in your composer.json file:

...
"autoload": {
    "psr-4": {
        "BuyIt\\": "src/"
    }
},
"autoload-dev": {
    "psr-4": {



Modules

[ 183 ]

        "BuyIt\\": "tests/"
    }
},
...

If you prefer to have a first-level namespace but use PSR-4, there are some small changes to
make:

                     

...
"autoload": {
    "psr-4": {
        "BuyIt\\": "src/BuyIt/"
    }
},
"autoload-dev": {
    "psr-4": {
        "BuyIt\\": "tests/BuyIt/"
    }
},
...

As you may have noticed in the examples, we split the src and tests folders. This was
done in order to optimize the autoloading file generated by Composer, and it will reduce
the memory needed to store the classmap. It will also help you set up whitelisting and
blacklisting options when generating your unit testing code coverage reports. If you want to
know more about Composer's autoloading configuration, take a look at the documentation.

https://getcomposer.org/doc/04-schema.md#autoload


Modules

[ 184 ]

What about PHAR files?
They could also be used, however, we don't recommend this. As an
exercise, make a list of pros and cons for using PHAR files to model
modules.

Bounded Contexts and Applications
If we take the example of a fictional company called BuyIt, which deals with an e-
commerce Domain, it may make sense to create a different application for each of the
different Bounded Contexts solving specific Domain areas.

If some of the different Bounded Contexts are Order Management, Payment Management,
Catalog Management, and Inventory Management, we recommend having an application
for each one: 

                    



Modules

[ 185 ]

Each application exposes any set of delivery mechanisms needed. With the microservices
trend, more and more people build Bounded Contexts that end up exposing REST APIs to
the outside world. However, a Bounded Context is more than just an API. Remember that
an API is just one of many delivery mechanisms; a Bounded Context can provide a web
interface to interact with too.

Can Two Bounded Contexts Be in the Same Application? What about
the Other Way Around?
The best option is one Subdomain, one Bounded Context, and one
application. If we have a Bounded Context implemented with two
applications, the maintenance and the deployment get a bit tricky. And in
the case of an application implementing two Bounded Contexts, the
deployment process, the time for running the tests, and merging issues
can slow down the development.

Beware that each Bounded Context name represents a meaningful concept in our e-
commerce Domain and is named in terms of the Ubiquitous Language:

Catalog to hold all the code related to the product descriptions, product
combinations, and so on.
Inventory to hold all the code related to the management of product stocks.
Orders to hold all the code related to the order processing systems. It will contain
the finite-state machine in charge of processing orders.
Payments to hold all the code related to payments, bills, and waybills.

Structuring Code in Modules
Let's dig a bit further into one of the Bounded Contexts. Take, for example, the Orders
context and examine the structure details. As its name suggests, this Bounded Context is
responsible for representing all the flows that an order passes — from its creation up to
delivering to the customer who has purchased it. Furthermore, it's an independent
Application, so it contains a source code folder and a tests folder. The source code folder
contains all the code necessary for this Bounded Context to work: the Domain code, the
Infrastructure code, and the Application layer.



Modules

[ 186 ]

The following diagram should illustrate the organization:   

                 

All the code is prefixed with a vendor namespace named in terms of the organization name
(BuyIt, in this case), and contains two subfolders: Domain holds all the Domain code, and
Infrastructure holds the Infrastructure layer, thereby isolating all the Domain logic from the
details of the Infrastructure layer. Following this structure, we're making it clear that we're
going to use Hexagonal Architecture as a foundational architecture. Below is an example of
an alternative structure that could be used:

                          

The above style of structure uses an additional subfolder to store the Services defined inside
the Domain Model. While this organization may make sense, our preference here is to not
use it, since this way of separating code tends to be more focused on the architectural
elements rather than the relevant concepts in the model. We believe this style could easily
lead to some sort of Service layer on top of the Domain Model, which isn't necessarily a bad
thing. Remember that Domain Services are used to describe operations in the Domain that
don't belong to Entities or Value Objects. So from now on, we'll stick with the previous code
organization.



Modules

[ 187 ]

It's possible to place code directly inside the Domain/Model subfolder. For example, it may
be customary to place common interfaces and Services, like the DomainEventPublisher or
the DomainEventSubscriber, in it.

If we had to model an Order Management context, we'd probably have an Order Entity
with its Repository and all the state information. So our first attempt would be to place all
those elements directly into the Domain/Model subfolder. At first glance, this may seem
like the simplest way:

Design Guidelines
Consider some basic rules and typical issues to pay attention to when implementing
modules:

Namespaces should be named in terms of Ubiquitous Language.
Don't name your namespaces based on patterns or building blocks (Value
Objects, Services, Entities, and so on).
Create namespaces so that what's inside is as loosely coupled with other
namespaces as possible.
Refactor namespaces the same way as your code. Move them, rename them,
group them, extract them, and so on.
Don't use commercial product names, as they can change. Stick to the Ubiquitous
Language.



Modules

[ 188 ]

We've placed the Order and the OrderLine Entities, the OrderLineWasAdded and the
OrderWasCreated Event, and the OrderRepository into the same subfolder
Domain/Model. This structure may be fine, but that's because we still have a simple model.
What about the Bill Entity and its Repository? Or the Waybill Entity and its respective
Repository? Let's add all those elements and see how they fit into the actual code structure:



Modules

[ 189 ]

While this style of code organization could be fine, it can become non-practical and rather
unmaintainable in the long run. Every time we iterate and add new features, the model will
become even bigger, and the subfolder will be eating even more code. We need to split the
code in a way that give us a perspective of the model at a glance. No technical concerns, just
Domain concerns. To reach this, we can split the model using the Ubiquitous Language, by
finding meaningful concepts that help us group elements logically in terms of the Domain.

To do this, we could try the following approach:



Modules

[ 190 ]

This way, the code is more organized, conceptually speaking. And as Eric Evans points out
in the Blue Book, modules are a way to communicate, as they provide us with insights
about how the Domain Model works internally, along with helping us increase the cohesion
and decrease the coupling between the concepts. If we look at the previous example, we can
see that the concepts Order and OrderLine are strongly related, so they live in the same
module. On the other hand, Order and Waybill, although sharing the same context, are
different concepts, so they live in different modules. Modules are not just a way to group
related concepts in the model, but also a way to express part of the design of the model.

Should We Place Repositories, Factories, Domain Events, and Services
in Their Own Subfolders?
Effectively, they could be placed into their own subfolders, but it's
strongly discouraged. In doing so, we would be mixing technical concerns
and Domain concerns — remember that the module's main interest is to
group related concepts from the Domain model and decouple them from
non-related concepts. Modules don't separate code but instead separate
meaningful concepts.

Modules in the Infrastructure Layer
Thus far, we've been discussing how we structure and organize code in the Domain layer,
but we've said almost nothing about the Infrastructure layer. And since we're using
Hexagonal Architecture to inverse the dependency between the Domain layer and the
Infrastructure layer, we'll need a place where we can put all the implementations of the
interfaces defined in the Domain layer. Returning to the example of the billing context, we
need a place for the implementations of BillRepository, OrderRepository, and
WaybillRepository.

It's clear that they should be placed into the Infrastructure folder, but where? Suppose we
decided to use Doctrine ORM to implement the persistence layer. How do we put the
Doctrine implementations of our Repositories into the Infrastructure folder? Let's do it
directly and see how it looks:

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Modules

[ 191 ]

We could leave this as is, but as we saw in the Domain layer, this structure and organization
will rot fast and become a mess within a few model iterations. Each time the model grows,
it'll probably need even more Infrastructure, and we'll end up mixing different technical
concerns such as persistence, messaging, logging, and more. Our first attempt to avoid a
tangled mess of Infrastructure implementations is to define a module for each technical
concern in the Bounded Context:

    



Modules

[ 192 ]

This looks much better and is a lot more maintainable in the long term than our first
attempt. However, our namespaces are lacking some sort of relation to the Ubiquitous
Language. Let's consider a variation:

Much better. It matches our Domain Model organization, but inside the Infrastructure layer
— plus everything seems easier to find. If you know beforehand that you'll always have a
single persistence mechanism, you can stick with this structure and organization. It's rather
simple and easy to maintain.



Modules

[ 193 ]

But what about when you have to play with several persistence mechanisms? Nowadays,
it's quite common to have a relational persistence mechanism and some kind of shared in-
memory persistence like Redis or Riak, or to have some sort of local in-memory
implementation to be able to test the code. Let's see how this fits into the actual approach:



Modules

[ 194 ]

We recommend the above. However, all the Repository implementations are living in the
same module. This could seem a bit odd when having so many different technologies. In
case you find it interesting, you can create an additional module in order to group the
related implementations by their underlying technology:

 

This approach is similar to the unit testing organization. However, there are classes,
configurations, templates, and so on. that can't be matched with the Domain Model. That's
why you may have additional modules inside the Infrastructure one that are related to
specific technologies.



Modules

[ 195 ]

Where should you place Doctrine mapping files or Twig templates?

     

As you can see, in order to make Doctrine work, we need an EntityManagerFactory and
all the mapping files. We may also include any other Infrastructure objects needed as base
classes. Because they're not directly related to our Domain Model, it's better to place these
resources in a different module. The same things happen with the Delivery Mechanisms
(API, Web, Console Commands, and so on.). In fact, you can be using different PHP
frameworks or libraries for each delivery mechanism:



Modules

[ 196 ]

In the previous example, we were using the Laravel Framework for serving the API, the
Symfony Console Component as the entry point for the command line, and Silex and Slim
for the web delivery mechanism. Regarding the User Interface, you should place it inside
each delivery mechanism. However, if there's any chance to share the UI between different
delivery mechanisms, you can create a module called UI at the same level as Persistence or
Delivery. In general, our suggestion is struggling with how the frameworks tell you to
organize your code. Frameworks should obey you, and not the other way around.

Mixing Different Technologies
In large business-critical applications, it's quite common to have a mix of several
technologies. For example, in read-intensive web applications, you usually have some sort
of denormalized data source (Solr, Elasticsearch, Sphinx, and so on.) that provides all the
reads of the application, while a traditional RDBMS like MySQL or Postgres is mainly
responsible for handling all the writes. When this occurs, one of the concerns that normally
arises is whether we can have read operations go with the search engine and write
operations go with the traditional RDBMS data source. Our general advice here is that these
kind of situations are a smell for CQRS, since we need to scale the reads and the writes of
the application independently. So if you can go with CQRS, that's likely the best choice.

But if for any reason you can't go with CQRS, an alternative approach is needed. In this
situation, the use of the Proxy pattern from the Gang of Four comes in handy. We can define
an implementation of a Repository in terms of the Proxy pattern:

namespace BuyIt\Billing\Infrastructure\FullTextSearching\Elastica;

use BuyIt\Billing\Domain\Model\Order\OrderRepository;
use BuyIt\Billing\Infrastructure\Domain\Model\Order\Doctrine\
    DoctrineOrderRepository;

class ElasticaOrderRepository implements OrderRepository
{
    private $client; 
    private $baseOrderRepository;

    public function __construct(
        Client $client,
        DoctrineOrderRepository $baseOrderRepository
    ) {
        $this->client = $client;
        $this->baseOrderRepository = $baseOrderRepository;
    }

    public function find($id)



Modules

[ 197 ]

    {
        return $this->baseOrderRepository->find($id);
    }

    public function findBy(array $criteria)
    {
        $search = new \Elastica\Search($this->client);
        // ...
        return $this->toOrder($search->search());
    }

    public function add($anOrder)
    {
        // First we attempt to add it to the Elastic index
        $ordersIndex = $this->client->getIndex('orders');
        $orderType = $ordersIndex->getType('order');
        $orderType->addDocument(
            new \ElasticaDocument(
                $anOrder->id(),
                $this->toArray($anOrder)
            )
        );

        $ordersIndex->refresh();

        // When it is done, we attempt to add it to the RDBMS store
        $this->baseOrderRepository->add($anOrder);
    }
}

This example provides a naive implementation using the DoctrineOrderRepository and
the Elastica client, a client to interact with an Elasticsearch server. Note that for some
operations, we're using the RDBMS datasource, and for others, we're using the Elastica
client. Also note that the add operation consists of two parts. The first one attempts to store
the Order to the Elasticsearch index, and the second one attempts to store the Order into the
relational database, delegating the operation to the Doctrine implementation. Take into
account that this is just an example and a way to do it. It can probably be improved — for
example, now the whole add operation is synchronous. We could instead enqueue the
operation to some sort of messaging middleware that stores the Order in Elasticsearch, for
example. There are a lot of possibilities and improvements, depending on your needs.



Modules

[ 198 ]

Modules in the Application Layer
We've seen Domain and Infrastructure modules, so now let's take a look at the Application
layer. In Domain-Driven Design, we suggest using Application Services as a way of
decoupling the client from both the Domain Model and the necessary knowledge on how to
interact with it. As you'll see in Chapter 11,  Application, an Application Service is built with
its dependencies, is executed with a DTO request, and returns a DTO response.

It can also use an output dependency to return the result:

               

Our suggestion is to create modules around Application Services. Each module will hold its
request and response. If you're using the Data Transformer as an output dependency,
follow the Infrastructure approach as you would with the UI.

Wrap-Up
Modules are a way of grouping and separating concepts in our application. Modules should
be named following the Ubiquitous Language. We shouldn't forget that modules are a way
to communicate high-level concepts, which aids us in keeping coupling low and cohesion
high. We've seen that we could create meaningful modules even in old versions of PHP by
using prefixes. Nowadays, it's easy to build our modules following the PSR-0 and PSR-4
namespacing conventions.



8
Aggregates

Aggregates are probably the most difficult building blocks of Domain-Driven Design.
They're hard to understand, and they're even harder to properly design. But don't worry;
we're here to help you. However, before jumping into Aggregates, there are some key
concepts we need to go through first: transactions and concurrency strategies.

Introduction
If you've worked with e-commerce applications, it's likely you've faced bugs related to data
inconsistencies in your database. For example, consider a shopping order with a total
amount of $99.99, which doesn't match with the sum of the amounts of each line in the
order, $89.99. Where did that extra $10 come from?

Or, consider a website that sells tickets for the cinema. There's a movie theater with 100
available seats, and after a successful movie promotion, everyone is on the website waiting
for the tickets to become available for purchase. Once you open the sales, everything
happens fast and you somehow end up selling 102 tickets. You may have specified that
there are only 100 seats, but for some reason you exceeded that threshold.

You might even have experience with tracking systems such as JIRA or Redmine. Think
about a team of Developers, QAs, and a Product Owner. What could happen if everyone
sorts and moves around user stories during a planning meeting and then saves? The final
backlog or sprint prioritization would be the one from the team member who saved last.



Aggregates

[ 200 ]

In general, data inconsistencies occur when we deal with our persistence mechanism in a
non-atomic way. An example of this is when you send three queries to a database and some
of them work and some don't. The final state of the database is inconsistent. Sometimes, you
want these three queries to succeed or fail all together, and that can be fixed with
transactions. However, be careful, because as you will see in this chapter, not all
inconsistencies are fixed with transactions. In fact, sometimes other data inconsistencies
need locking or concurrency strategies. These kinds of tools might come up against your
application performance, so be aware that there's a tradeoff involved.

You may think that these kinds of data inconsistencies only occur in databases, but that's
not true. For example, if we use a document-oriented database such as Elasticsearch, we can
have data inconsistency between two documents. Furthermore, most of the NoSQL
persistence storage systems don't support ACID transactions. This means you can't persist
or update more than one document in a single operation. So, if we make different requests
to Elasticsearch, one may fail, leaving the data persisted in Elasticsearch inconsistent.

Keeping data consistent is a challenge. Not leaking infrastructure issues into the Domain is
a bigger challenge. Aggregates aim to help you with both of these things.

Key Concepts
Persistence engines — and databases in particular — have some features for fighting data
inconsistencies: ACID, constraints, referential integrity, locking, concurrency controls, and
transactions. Let's review these concepts before working with Aggregates.

Most of these concepts are on the Internet and available to the public. We want to thank the
people at Oracle, PostgreSQL, and Doctrine for doing amazing work with their
documentation. They have carefully defined and explained these important terms, and
rather than reinvent the wheel, we've compiled some of these official explanations to share
with you.

ACID
As discussed in a previous section, ACID stands for atomicity, consistency, isolation, and
durability. According to the MySQL Glossary:

These properties are all desirable in a database system, and are all closely tied to
the notion of a transaction. For example, the transactional features of MySQL
InnoDB engine adhere to the ACID principles.

http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_acid


Aggregates

[ 201 ]

Transactions are atomic units of work that can be committed or rolled back. When
a transaction makes multiple changes to the database, either all the changes
succeed when the transaction is committed, or all the changes are undone when
the transaction is rolled back.

The database remains in a consistent state at all times, after each commit or
rollback, and while transactions are in progress. If related data is being updated
across multiple tables, queries see either all old values or all new values, not a mix
of old and new values.

Transactions are protected isolated from each other while they are in progress.
They cannot interfere with each other or see each other's uncommitted data. This
isolation is achieved through the locking mechanism. Experienced users can
adjust the isolation level, trading off less protection in favor of increased
performance and concurrency, when they can be sure that the transactions really
do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the
changes made by that transaction are safe from power failures, system crashes,
race conditions, or other potential dangers that many non-database applications
are vulnerable to. Durability typically involves writing to disk storage, with a
certain amount of redundancy to protect against power failures or software
crashes during write operations.

Transactions
According to the PostgreSQL 8.2.23 Documentation:

Transactions are a fundamental concept of all database systems. The essential
point of a transaction is that it bundles multiple steps into a single, all-or-nothing
operation. The intermediate states between the steps are not visible to other
concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

https://www.postgresql.org/docs/8.2/static/tutorial-transactions.html


Aggregates

[ 202 ]

For example, consider a bank database that contains balances for various customer
accounts, as well as total deposit balances for branches. Suppose that we want to record a
payment of $100.00 from Alice's account to Bob's account. Simplifying outrageously, the
SQL commands for this might look like:

UPDATE accounts
    SET balance = balance - 100.00
WHERE name = 'Alice';

UPDATE branches
    SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name ='Alice');

UPDATE accounts
    SET balance = balance + 100.00
WHERE name = 'Bob';

UPDATE branches
    SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name ='Bob');

The details of these commands are not important here. The important point is that
there are several separate updates involved to accomplish this rather simple
operation. Our bank's officers will want to be assured that either all these updates
happen, or none of them happen. It would certainly not do for a system failure to
result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We
need a guarantee that if something goes wrong partway through the operation,
none of the steps executed so far will take effect. Grouping the updates into a
transaction gives us this guarantee. A transaction is said to be atomic: from the
point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged
by the database system, it has indeed been permanently recorded and won't be
lost even if a crash ensues shortly thereafter. For example, if we are recording a
cash withdrawal by Bob, we do not want any chance that the debit to his account
will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in
permanent storage (That is: on disk) before the transaction is reported complete.



Aggregates

[ 203 ]

Another important property of transactional databases is closely related to the
notion of atomic updates: when multiple transactions are running concurrently,
each one should not be able to see the incomplete changes made by others. For
example, if one transaction is busy totalling all the branch balances, it would not
do for it to include the debit from Alice's branch but not the credit to Bob's branch,
nor vice versa. So transactions must be all-or-nothing not only in terms of their
permanent effect on the database, but also in terms of their visibility as they
happen. The updates made so far by an open transaction are invisible to other
transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In PostgreSQL, for example, a transaction is set up by surrounding the SQL
commands of the transaction with BEGIN and COMMIT commands. So our banking
transaction would actually look like:

BEGIN;
UPDATE accounts
    SET balance = balance - 100.00
WHERE name = 'Alice';
-- etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit
(perhaps we just noticed that Alice's balance went negative), we can issue the
command ROLLBACK instead of COMMIT, and all our updates so far will be
canceled.

PostgreSQL actually treats every SQL statement as being executed within a
transaction. If you do not issue a BEGIN command, then each individual statement
has an implicit BEGIN and (if successful) COMMIT wrapped around it. A group of
statements surrounded by BEGIN and COMMIT is sometimes called a transaction
block.

All this is happening within the transaction block, so none of it is visible to other
database sessions. When and if you commit the transaction block, the committed
actions become visible as a unit to other sessions, while the rolled-back actions
never become visible at all.



Aggregates

[ 204 ]

Isolation Levels
According to the MySQL Glossary, transaction isolation is:

One of the foundations of database processing. Isolation is the "I" in the acronym
ACID. The isolation level is the setting that fine-tunes the balance between
performance and reliability, consistency, and reproducibility of results when
multiple transactions are making changes and performing queries at the same
time.

From highest amount of consistency and protection to the least, the isolation
levels supported by InnoDB, for example, are: SERIALIZABLE, REPEATABLE
READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level REPEATABLE
READ for all operations. Expert users might choose the read committed level as
they push the boundaries of scalability with OLTP processing, or during data
warehousing operations where minor inconsistencies do not affect the aggregate
results of large amounts of data. The levels on the edges (SERIALIZABLE and
READ UNCOMMITTED) change the processing behavior to such an extent that they
are rarely used.

Referential Integrity
According to the MySQL Glossary, referential integrity is:

The technique of maintaining data always in a consistent format, part of the ACID
philosophy. In particular, data in different tables is kept consistent through the
use of foreign key constraints, which can prevent changes from happening or
automatically propagate those changes to all related tables. Related mechanisms
include the unique constraint, which prevents duplicate values from being
inserted by mistake, and the NOT NULL constraint, which prevents blank values
from being inserted by mistake.

http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_isolation_level
http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_referential_integrity


Aggregates

[ 205 ]

Locking
According to the MySQL Glossary, locking is:

The system of protecting a transaction from seeing or changing data that is being
queried or changed by other transactions. The locking strategy must balance
reliability and consistency of database operations (the principles of the ACID
philosophy) against the performance needed for good concurrency. Fine-tuning
the locking strategy often involves choosing an isolation level and ensuring all
your database operations are safe and reliable for that isolation level.

Concurrency
According to the MySQL Glossary, concurrency is:

The ability of multiple operations (in database terminology, transactions) to run
simultaneously, without interfering with each other. Concurrency is also involved
with performance, because ideally the protection for multiple simultaneous
transactions works with a minimum of performance overhead, using efficient
mechanisms for locking.

Pessimistic Concurrency Control (PCC)
The book Elasticsearch: The Definitive Guide by Clinton Gormley and Zachary Tong
discusses PCC, saying that:

Widely used by relational databases, this approach assumes that conflicting
changes are likely to happen and so blocks access to a resource in order to prevent
conflicts. A typical example is locking a row before reading its data, ensuring that
only the thread that placed the lock is able to make changes to the data in that
row.

http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_locking
http://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_concurrency
https://github.com/elastic/elasticsearch-definitive-guide/blob/master/030_Data/40_Version_control.asciidoc


Aggregates

[ 206 ]

With Doctrine
According to the Doctrine 2 ORM Documentation on locking support:

Doctrine 2 offers support for Pessimistic- and Optimistic-locking strategies
natively. This allows to take very fine-grained control over what kind of locking is
required for your Entities in your application.

According to the Doctrine 2 ORM Documentation on pessimistic locking:

Doctrine 2 supports Pessimistic Locking at the database level. No attempt is being
made to implement pessimistic locking inside Doctrine, rather vendor-specific
and ANSI-SQL commands are used to acquire row-level locks. Every Doctrine
Entity can be part of a pessimistic lock, there is no special metadata required to
use this feature.

However for Pessimistic Locking to work you have to disable the Auto-Commit
Mode of your Database and start a transaction around your pessimistic lock use-
case using the Explicit Transaction Demarcation. Doctrine 2 will throw an Exception
if you attempt to acquire an pessimistic lock and no transaction is running.

Doctrine 2 currently supports two pessimistic lock modes:

Pessimistic Write Doctrine\DBAL\LockMode::PESSIMISTIC_WRITE, locks the
underlying database rows for concurrent Read and Write Operations.
Pessimistic Read Doctrine\DBAL\LockMode::PESSIMISTIC_READ, locks other
concurrent requests that attempt to update or lock rows in write mode.

You can use pessimistic locks in three different scenarios:

Using EntityManager#find($className, $id,
\Doctrine\DBAL\LockMode::PESSIMISTIC_WRITE) or
EntityManager#find($className, $id,
\Doctrine\DBAL\LockMode::PESSIMISTIC_READ)

Using EntityManager#lock($entity,
\Doctrine\DBAL\LockMode::PESSIMISTIC_WRITE) or
EntityManager#lock($entity,
\Doctrine\DBAL\LockMode::PESSIMISTIC_READ)

Using
Query#setLockMode(\Doctrine\DBAL\LockMode::PESSIMISTIC_WRITE) or
Query#setLockMode(\Doctrine\DBAL\LockMode::PESSIMISTIC_READ)

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/transactions-and-concurrency.html#locking-support
http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/transactions-and-concurrency.html#pessimistic-locking


Aggregates

[ 207 ]

Optimistic Concurrency Control
According to Wikipedia:

Optimistic concurrency control (OCC) is a concurrency control method applied
to transactional systems such as relational database management systems and
software transactional memory. OCC assumes that multiple transactions can
frequently complete without interfering with each other. While running,
transactions use data resources without acquiring locks on those resources. Before
committing, each transaction verifies that no other transaction has modified the
data it has read. If the check reveals conflicting modifications, the committing
transaction rolls back and can be restarted. Optimistic concurrency control was
first proposed by H.T. Kung.

OCC is generally used in environments with low data contention. When conflicts
are rare, transactions can complete without the expense of managing locks and
without having transactions wait for other transactions' locks to clear, leading to
higher throughput than other concurrency control methods. However, if
contention for data resources is frequent, the cost of repeatedly restarting
transactions hurts performance significantly; it is commonly thought that other
concurrency control methods have better performance under these conditions.
However, locking-based "pessimistic" methods also can deliver poor performance
because locking can drastically limit effective concurrency even when deadlocks
are avoided.

With Elasticsearch
According to Elasticsearch: The Definitive Guide, when OCC is used by Elasticsearch:

This approach assumes that conflicts are unlikely to happen and doesn't block
operations from being attempted. However, if the underlying data has been
modified between reading and writing, the update will fail. It is then up to the
application to decide how it should resolve the conflict. For instance, it could
reattempt the update, using the fresh data, or it could report the situation to the
user.

Elasticsearch is distributed. When documents are created, updated, or deleted, the
new version of the document has to be replicated to other nodes in the cluster.
Elasticsearch is also asynchronous and concurrent, meaning that these replication
requests are sent in parallel, and may arrive at their destination out of sequence.
Elasticsearch needs a way of ensuring that an older version of a document never
overwrites a newer version.

https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://github.com/elastic/elasticsearch-definitive-guide/blob/master/030_Data/40_Version_control.asciidoc


Aggregates

[ 208 ]

Every document has a _version number that is incremented whenever a
document is changed. Elasticsearch uses this _version number to ensure that
changes are applied in the correct order. If an older version of a document arrives
after a new version, it can simply be ignored.

We can take advantage of the _version number to ensure that conflicting changes
made by our application do not result in data loss. We do this by specifying the
version number of the document that we wish to change. If that version is no
longer current, our request fails.

Let's create a new blog post:

    PUT /website/blog/1/_create
    {
       "title": "My first blog entry",
       "text": "Just trying this out..."
    } 

The response body tells us that this newly created document has _version number
1. Now imagine that we want to edit the document: we load its data into a web
form, make our changes, and then save the new version.

First we retrieve the document:

    GET /website/blog/1

The response body includes the same _version number of 1:

{
    "index": "website",
    "type": "blog",
    "id": "1",
    "version": 1,
    "found": true,
    "_source": {
        "title": "My first blog entry",
        "text": "Just trying this out..."
    }
}

Now, when we try to save our changes by reindexing the document, we specify
the version to which our changes should be applied. We want this update to
succeed only if the current _version of this document in our index is version 1:

   PUT /website/blog/1?version=1
   {
      "title": "My first blog entry",



Aggregates

[ 209 ]

      "text": "Starting to get the hang of this..."
   }

This request succeeds, and the response body tells us that the _version has been
incremented to 2:

   {
      "index": "website",
      "type": "blog",
      "id": "1",
      "version": 2,
      "created": false
   }

However, if we were to rerun the same index request, still specifying version=1,
Elasticsearch would respond with a 409 Conflict HTTP response code, and a body
like the following:

{
    "error": {
        "root_cause": [{
             "type": "version_conflict_engine_exception",
             "reason":
                 "[blog][1]: version conflict,current[2],provided
[1]",
             "index": "website",
             "shard": "3"
        }],
        "type": "version_conflict_engine_exception" ,
        "reason":
            "[blog][1]:version conflict,current [2],provided[1]",
        "index": "website",
        "shard": "3"
    },
    "status": 409
}

This tells us that the current _version number of the document in Elasticsearch is
2, but that we specified that we were updating version 1.

What we do now depends on our application requirements. We could tell the user
that somebody else has already made changes to the document, and to review the
changes before trying to save them again. Alternatively, as in the case of the
widget stock_count previously, we could retrieve the latest document and try to
reapply the change.



Aggregates

[ 210 ]

All APIs that update or delete a document accept a version parameter, which
allows you to apply optimistic concurrency control to just the parts of your code
where it makes sense.

With Doctrine
According to the Doctrine 2 ORM Documentation on optimistic locking:

Database transactions are fine for concurrency control during a single request.
However, a database transaction should not span across requests, the so-called
"user think time". Therefore a long-running "business transaction" that spans
multiple requests needs to involve several database transactions. Thus, database
transactions alone can no longer control concurrency during such a long-running
business transaction. Concurrency control becomes the partial responsibility of the
application itself.

Doctrine has integrated support for automatic optimistic locking via a version
field. In this approach any entity that should be protected against concurrent
modifications during long-running business transactions gets a version field that
is either a simple number (mapping type: integer) or a timestamp (mapping
type: datetime). When changes to such an entity are persisted at the end of a
long-running conversation the version of the entity is compared to the version in
the database and if they don't match, an OptimisticLockException is thrown,
indicating that the entity has been modified by someone else already.

You designate a version field in an entity as follows. In this example we'll use an
integer:

   class User
   {
       // ...
       /** @Version @Column(type="integer") */
       private $version;
       // ...
   }

When a version conflict is encountered during EntityManager#flush(), an
OptimisticLockException is thrown and the active transaction rolled back (or
marked for rollback). This exception can be caught and handled. Potential
responses to an OptimisticLockException are to present the conflict to the
user or to refresh or reload objects in a new transaction and then retrying the
transaction.

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/transactions-and-concurrency.html#optimistic-locking


Aggregates

[ 211 ]

With PHP promoting a share-nothing architecture, the time between showing an
update form and actually modifying the entity can in the worst scenario be as
long as your applications session timeout. If changes happen to the entity in that
time frame you want to know directly when retrieving the entity that you will hit
an optimistic locking exception:

You can always verify the version of an entity during a request either when calling
EntityManager#find():

use Doctrine\DBAL\LockMode;
use Doctrine\ORM\OptimisticLockException;

$theEntityId = 1; 
$expectedVersion = 184;
try{
   $entity = $em->find(
       'User',
       $theEntityId,
       LockMode::OPTIMISTIC,
       $expectedVersion
   );
   // do the work
   $em->flush();
} catch (OptimisticLockException $e){
    echo
        'Sorry, someone has already changed this entity.' .
        'Please apply the changes again!';
}

Or you can use EntityManager#lock() to find out:

use DoctrineDBALLockMode;
use DoctrineORMOptimisticLockException;

$theEntityId = 1;
$expectedVersion = 184;
$entity = $em->find('User', $theEntityId);
try {
    // assert version em−>lock(entity, LockMode::OPTIMISTIC,
    $expectedVersion);
} catch (OptimisticLockException $e){
    echo
        'Sorry, someone has already changed this entity.' .
        'Please apply the changes again!';
}



Aggregates

[ 212 ]

According to Doctrine 2 ORM Documentation's  important implementation notes:

You can easily get the optimistic locking workflow wrong if you compare the
wrong versions. Say you have Alice and Bob editing a hypothetical blog post:

Alice reads the headline of the blog post being "Foo", at optimistic lock
version 1 (GET Request)
Bob reads the headline of the blog post being "Foo", at optimistic lock
version 1 (GET Request)
Bob updates the headline to "Bar", upgrading the optimistic lock
version to 2 (POST Request of a Form)
Alice updates the headline to "Baz", ... (POST Request of a Form)

Now at the last stage of this scenario the blog post has to be read again from the
database before Alice's headline can be applied. At this point you will want to
check if the blog post is still at version 1 (which it is not in this scenario).

Using optimistic locking correctly, you have to add the version as an additional
hidden field (or into the SESSION for more safety). Otherwise you cannot verify
the version is still the one being originally read from the database when Alice
performed her GET request for the blog post. If this happens you might see lost
updates you wanted to prevent with Optimistic Locking.

See the example code, The form (GET Request):

$post = $em->find('BlogPost', 123456);
echo '<input type="hidden" name="id" value="' .
         $post->getId() . '"/>';
echo '<input type="hidden" name="version" value="' .
         $post->getCurrentVersion() . '" />';

And the change headline action (POST Request):

$postId = (int) $_GET['id'];
$postVersion = (int) $_GET['version'];
$post = $em->find(
    'BlogPost',
    $postId,
    DoctrineDBALLockMode::OPTIMISTIC,
    $postVersion
);

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/transactions-and-concurrency.html#important-implementation-notes
http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/transactions-and-concurrency.html#important-implementation-notes
http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/transactions-and-concurrency.html#important-implementation-notes


Aggregates

[ 213 ]

Wow — that was a lot of information to take in. However, don't worry if you don't
completely understand everything. The more you work with Aggregates and Domain-
Driven Design, the more you'll encounter moments when transactionality has to be
considered in designing your Application.

To summarize, if you want to keep your data consistent, use transactions. However, be
careful about overusing transactions or locking strategies because these can slow your
Application down or make it unusable. If you want to have a really fast Application,
optimistic concurrency can help you. Last but not least, some data can eventually be
consistent. This means that we allow our data to not be consistent for a particular window
of time. During that time, some inconsistencies are acceptable. Eventually, an asynchronous
process will perform the final task to remove such inconsistencies.

What Is an Aggregate?
Aggregates are Entities that hold other Entities and Value Objects that help keep data
consistent. From Vaughn Vernon's Implementing Domain-Driven Design:

Aggregates are carefully crafted consistency boundaries that cluster Entities and
Value Objects.

Another amazing book that you should definitely buy and read is NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persistence by Pramod J. Sadalage
and Martin Fowler. This book says that:

In Domain-Driven Design, an aggregate is a collection of related objects that we
wish to treat as a unit. In particular, it is a unit for data manipulation and
management of consistency. Typically, we like to update aggregates with atomic
operations and communicate with our data storage in terms of aggregates.

What Martin Fowler Says...
From h t t p ://m a r t i n f o w l e r . c o m /b l i k i /D D D _ A g g r e g a t e . h t m l :

Aggregate is a pattern in Domain-Driven Design. A DDD aggregate is a cluster of
domain objects that can be treated as a single unit. An example may be an order
and its line-items, these will be separate objects, but it is useful to treat the order
(together with its line items) as a single aggregate.

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
https://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620?
https://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620?
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html
http://martinfowler.com/bliki/DDD_Aggregate.html


Aggregates

[ 214 ]

An aggregate will have one of its component objects be the aggregate root. Any
references from outside the aggregate should only go to the aggregate root. The
root can thus ensure the integrity of the aggregate as a whole.

Aggregates are the basic element of transfer of data storage you request to load or
save whole aggregates. Transactions should not cross aggregate boundaries.

DDD Aggregates are sometimes confused with collection classes (lists, maps, and
so on). DDD aggregates are domain concepts (order, clinic visit, playlist), while
collections are generic. An aggregate will often contain multiple collections,
together with simple fields. The term aggregate is a common one, and is used in
various different contexts (example: UML), in which case it does not refer to the
same concept as a DDD aggregate.

What Wikipedia Says...
From h t t p s ://e n . w i k i p e d i a . o r g /w i k i /D o m a i n - d r i v e n _ d e s i g n #B u i l d i n g _ b l o c k s _ o f _ D

D D :

Aggregate: A collection of objects that are bound together by a root entity,
otherwise known as an aggregate root. The aggregate root guarantees the
consistency of changes being made within the aggregate by forbidding external
objects from holding references to its members.

Example: When you drive a car, you do not have to worry about moving the
wheels forward, making the engine combust with spark and fuel, etc.; you are
simply driving the car. In this context, the car is an aggregate of several other
objects and serves as the aggregate root to all of the other systems.

Why Aggregates?
The avid reader will probably be wondering what all of this has to do with Aggregates and
Aggregate Design. And actually, that's a pretty good question. There's a direct relation, so
let's explore it. The Relational Model uses tables to store data. Those tables are composed of
rows, where each row usually represents an instance of a concept of the application's
interest. Additionally, each row can point to other rows on other tables of the same
database, and the consistency between this relationship can be kept by the use of referential
integrity. This model is fine; however, it lacks a very basic word: the object word.

https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
https://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD


Aggregates

[ 215 ]

Indeed, when we talk about the Relational Model, we're namely talking about tables, rows,
and relationships between rows. And when we talk about the Object-Oriented Model, we're
talking mainly about compositions of objects. So every time we fetch data — a set of rows
— from a relational database, we run a translation process responsible for building an in-
memory representation we can operate with. The same applies to the opposite direction.
Every time we need to store an object in the database, we should run the other translation
process to translate that object to a given set of rows or tables. This translation, from object
to rows or tables, means that you may run different queries against your database. As such,
without using any specific tool, such as transactions, it's impossible to guarantee the data
will be persisted consistently. This problem is the so-called impedance mismatch.

Impedance Mismatch
The object-relational impedance mismatch is a set of conceptual and
technical difficulties that are often encountered when a relational
database management system (RDBMS) is being used by a program
written in an object-oriented programming language or style, particularly
when objects or class definitions are mapped in a straightforward way to
database tables or relational schemata.
Extracted from Wikipedia

The impedance mismatch is not an easy problem to solve, so we highly discourage
trying to solve it on your own. It would be a huge undertaking, and it's simply not worth
the effort. Luckily, there are some libraries out there that take care of this translation
process. They're commonly known as Object-Relational Mappers (which we've discussed in
earlier chapters) and their primary concern is to ease the process of translating from the
Relational Model to the Object-Oriented Model, and vice versa.

This is an issue that also affects NoSQL persistence engines and not just databases. Most
NoSQL engines use documents. An Entity is translated into a document representation such
as JSON, XML, binary, and so on. and then persisted. The main difference with RDBMS
databases is that if a main Entity (such as Order) has other related Entities (such as
OrderLines), you can more easily design a single JSON document that will contain all the
information. With this approach, with a single request to your NoSQL engine, you don't
need transactions.

Nevertheless, if you're using NoSQL or RDBMS for fetching and persisting your Entities,
you'll need one or more queries. In order to ensure data consistency, those queries or
requests need to be executed as a single operation. Running as a single operation can
guarantee that data will be consistent.

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://martinfowler.com/bliki/OrmHate.html


Aggregates

[ 216 ]

What does consistent mean? It means that all data persisted into our database must be
compliant with all business rules, also known as invariants. An example of a business
invariant could be how on GitHub, a user is able to have unlimited public repositories but
no private repositories. However, if this user pays $12 per month, then they're able to have
up to 10 private repositories.

Relational databases provide three main tools for helping us with data consistency: *
Referential integrity: Foreign keys, nullable checks, and so on. * Transactions: Run multiple
queries as a single operation. The problem with transactions is the same as that of branches
and merges in your code repository. Keeping a branch has a performance cost (memory,
CPU, storage, indexing, and so on.). If too many people (concurrency) are touching the
same data, conflicts will occur and transaction commits will fail. * Locking: Block rows or
tables. Other queries around the same tables and rows must wait for the block to be
removed. Locking has a negative impact on the performance of your application.

Suppose we have an e-commerce application we want to expand to other countries and
regions, and suppose the release goes fairly well and sales increase. A pretty evident side
effect of the release is that the database should be able to handle the additional load
increase. As seen earlier, there are two scaling methods: up or out.

Scaling up means we improve the hardware infrastructure we have (For example: better
CPU, more memory, better hard disks). Scaling out means adding more machines that will
organize in a cluster for doing specific work. In this case, we could have a cluster of
databases.

But relational databases aren't designed to scale horizontally, since we can't configure them
to save one set of rows to a given machine and another set of rows to a different one.
Relational databases are easy to scale up, but the Relational Model doesn't scale
horizontally.

In the NoSQL world, data consistency is a bit more difficult: transactions and referential
integrity aren't generally supported, while locking is supported but generally not
encouraged.

NoSQL databases aren't affected as drastically by the impedance mismatch. They match
perfectly with Aggregate Design because they enable us to easily store and retrieve single
units atomically. For example, when using a key-value store such as Redis, an Aggregate
could be serialized and stored on a specific key. On a document-oriented store such as
Elasticsearch, an Aggregate would be serialized into a JSON and persisted as a document.
As mentioned before, the problem comes when multiple documents must be updated at
once.



Aggregates

[ 217 ]

For that reason, when persisting any object with a single representation (one document, so
no multiple queries needed), it's easy to distribute those single units across several
machines, called nodes, which make up a cluster of NoSQL databases. It's common
knowledge that these databases are easy to distribute, which means that the style of
databases is easy to scale horizontally.

A Bit of History
Around the beginning of the 21st century, companies such as Amazon and Google grew
massively. In order to consolidate their growth, they used clustering techniques: not only
did they have better servers, but they also relied on many more of them working together.

In a scenario such as this, deciding how to store your data is key. If you take an Entity and
spread its information throughout multiple servers, in multiple nodes of a cluster, the effort
needed to control transactions is high. The same thing applies if you want to fetch an Entity.
So if you can design your Entity in a way that is persisted in the node of a cluster, it makes
things much easier. That's one of the reasons why Aggregate Design is so important.

If you want to know more about the history of Aggregate Design outside of Domain-Driven
Design, take a look at NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence.

Anatomy of an Aggregate
An Aggregate is an Entity that may hold other Entities and Value Objects. The parent Entity
is known as the root Entity.

A single Entity without any child Entities or Value Objects is also an Aggregate by itself.
That's why in some books, the term Aggregates is used instead of the term Entity. When we
use them here, Entity and Aggregate mean the same thing.

The main goal of an Aggregate is to keep your Domain Model consistent. Aggregates
centralize most of the business rules. Aggregates are persisted atomically in your
persistence mechanism. No matter how many child Entities and Value Objects live inside
the root Entity, all of them will be persisted atomically, as a single unit. Let's see an
example.

https://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620?
https://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620?


Aggregates

[ 218 ]

Consider an e-commerce application, website, and so on. Users can place orders, which
have multiple lines that define what product was bought, the price, the quantity, and the
line total amount. An order has a total amount too, which is the sum of all line amounts.

What could happen if you update a line amount but not the order amount? Data
inconsistency. To fix this, any modification to any Entity or Value Object within the
Aggregate is performed through the root Entity. Most PHP developers we've worked with
are more comfortable building objects and then handling their relationships from the client
code, rather than pushing the business logic inside the Entities:

$order = ...
$orderLine = new OrderLine(
    'Domain-Driven Design in PHP', 24.99
);
$order->addOrderLine($orderLine);

As seen in the previous code example, newbie or even average developers generally build
child objects first and then relate them to the parent object using a setter. Consider the
following approach:

$order = ...
$orderLine = $order->addOrderLine(
    'Domain-Driven Design in PHP', 24.99
);

Or, consider this approach:

$order = ...
$order->addOrderLine(
    'Domain-Driven Design in PHP', 24.99
);

These approaches are very interesting because they follow two Software Design principles:
Tell-Don't-Ask and Law of Demeter.

According to Martin Fowler:

Tell-Don't-Ask is a principle that helps people remember that object-orientation is
about bundling data with the functions that operate on that data. It reminds us
that rather than asking an object for data and acting on that data, we should
instead tell an object what to do. This encourages to move behavior into an object
to go with the data.

http://martinfowler.com/bliki/TellDontAsk.html


Aggregates

[ 219 ]

According to Wikipedia:

The Law of Demeter (LoD) or principle of least knowledge is a design guideline
for developing software, particularly object-oriented programs. In its general
form, the LoD is a specific case of loose coupling...and can be succinctly
summarized in each of the following ways:

Each unit should have only limited knowledge about other units: only
units "closely" related to the current unit.
Each unit should only talk to its friends; don't talk to strangers.
Only talk to your immediate friends.

The fundamental notion is that a given object should assume as little as possible
about the structure or properties of anything else (including its subcomponents),
in accordance with the principle of "information hiding".

Let's continue with the order example. You've already learned how to run operations
through the root Entity. Now let's update a product quantity of a line in an order. This
increases the quantity, the line total amount, and the order amount. Great! Now it's time to
persist the order with the changes.

If you're using MySQL, you can imagine that we'll need two UPDATE statements: one for the
orders table, and another one for the order_lines table. What could happen if these two
queries aren't performed inside a transaction?

Let's assume that the UPDATE statement that updates the line order works properly.
However, the UPDATE on the order total amount fails due to network connectivity issues. In
such a scenario, you would end up with a data inconsistency in your Domain Model.
Transactions help you keep this consistency.

If you're using Elasticsearch, the situation is a bit different. You can map the order with a
JSON document that holds order lines internally, so just a single request is needed.
However, if you decide to map the order with one JSON document and each of its order
lines with another JSON document, you're in trouble, as Elasticsearch doesn't support
transactions. Ouch!

An Aggregate is fetched and persisted using its own Chapter 10, Repositories. If two Entities
don't belong to the same Aggregate, both will have their own Repository. If a true business
invariant exists and two Entities belong to the same Aggregate, you'll only have one
Repository. This Repository will be the one for the root Entity.

What are the cons of Aggregates? The problem when dealing with transactions is the
possibility of performance issues and operation errors. We'll explore this in depth soon.

https://en.wikipedia.org/wiki/Law_of_Demeter


Aggregates

[ 220 ]

Aggregate Design Rules
When designing an Aggregate, there are some rules and considerations to follow in order to
get all the benefits and minimize the negative effects. Don't worry too much if you don't
understand everything now; as an example, we'll show you a small application where we'll
be referencing the rules we introduce you to.

Design Aggregates Based in Business True
Invariants
First of all, what's an invariant? An invariant is a rule that must be true and consistent
during code execution. For example, a stack is a LIFO (Last In, First Out) data structure
that we can push items into and pop items out of. We can also ask how many items are inside
of the stack; this is what's called the size of the stack. Consider a pure PHP implementation
without using any specific PHP array functions such as array_pop:

class Stack
{
    private $data;

    public function __construct()
    {
        $this->data = [];
    }

    public function push($value)
    {
        $this->data[] = $value;
    }

    public function size()
    {
        $size = 0;
        for ($i = 0; $i < count($this->data); $i++) {
            $size++;
        }

        return $size;
    }

    /**
     * @return mixed
     */
    public function pop()

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)


Aggregates

[ 221 ]

    {
        $topIndex = $this->size() - 1;
        $top = $this->data[$topIndex];
        unset($this->data[$topIndex]);
        return $top;
    }
}

Consider the previous size method implementation. It's far from perfect, but it works.
However, as it's implemented in the code above, it's a CPU-intensive and high-cost call.
Luckily, there's an option to improve this method, by introducing a private attribute to keep
track of the number of elements in the internal array:

class Stack
{
    private $data; 
    private $size;

    public function __construct()
    {
        $this->data = [];
        $this->size = 0;
    }

    public function push($value)
    {
        $this->data[] = $value;
        $this->size++;
    }

    public function size()
    {
       return $this->size;
    }

    /**
     * @return mixed
     */
    public function pop()
    {
        $topIndex = $this->size--;
        $top = $this->data[$topIndex];
        unset($this->data[$topIndex]);

        return $top;
    }
}



Aggregates

[ 222 ]

With these changes, the size method is now a fast operation, as it just returns the value of
the size field. To accomplish this, we introduced a new integer attribute called size. When
a new Stack is created, the value of size is 0, and there's no element in the Stack. When
we add a new element into the Stack using the push method, we also increase the value of
the size field. Similarly, we reduce the value of size when we remove a value from the
Stack using the pop method.

By incrementing and decreasing the value of size, we keep it consistent with the real
number of elements that are inside the Stack. The size value is consistent right before and
right after calling any public method in the Stack class. As a result, the size value is always
equal to the number of elements in the Stack. That's an invariant! We could write it down
as $this->size === count($this->data).

A true business invariant is a business rule that must always be true and transactionally
consistent within an Aggregate. By transactionally consistent, we mean that updating an
aggregate must be an atomic operation. All the data contained inside an Aggregate must be
persisted atomically. If we don't follow this rule, we could persist data representing a non-
valid Aggregate.

According to Vaughn Vernon:

A properly designed Aggregate is one that can be modified in any way required
by the business with its invariants completely consistent within a single
transaction. And a properly designed Bounded Context modifies only one
Aggregate instance per transaction in all cases. What is more, we cannot correctly
reason on Aggregate design without applying transactional analysis.

As discussed in the introduction, in an e-commerce application, the amount of an order
must match the sum of the amounts of every line in that order. That's an invariant, or
business rule. We have to persist the Order and its OrderLines into the database in the
same transaction. This forces us to make Order and OrderLine be part of the same
Aggregate, where Order would be the Aggregate Root. Because Order is the root, all
operations related to OrderLines must go through the Order. So no more instantiating
OrderLine objects outside of an Order and then using a setter method to add OrderLines
to the Order. Instead, we must use Factory Methods on the Order.

With this approach, we have a single entry point to perform operations on the Aggregate:
the Order. It means there's no chance of invoking a method to break such a rule. Each time
you add or update an OrderLine through the Order, the Order amount gets recalculated
internally. Making all operations go through the root help us keep the Aggregate consistent.
In this way, it's more difficult to break any invariant.

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577


Aggregates

[ 223 ]

Small Aggregates Vs. Big Aggregates
For most of the websites and projects where we've worked, almost 95 percent of Aggregates
were formed by one single root Entity and some Value Objects. No other Entities were
required to be in the same Aggregate. So in most cases, there was no real true business
invariant to keep consistent.

Be careful with the has-a/has-many relations that don't necessarily make two Entities
become one Aggregate, with one of those being the root. Relations, as we will see, can be
handled by referencing Entity Identities.

As explained in the introduction, an Aggregate is a transactional boundary. The smaller the
boundary is, the fewer chances there are for conflicts when committing multiple concurrent
transactions. When designing Aggregates, you should strive to create them small. If there's
no true invariant to protect, that means all single Entities form an Aggregate by themselves.
That's great, because it's the best scenario for achieving the best performance. Why? Because
locking issues and failed transaction issues are minimized.

If you decide to go for big Aggregates, keeping data consistent can be easier but is probably
impractical. When applications with big Aggregates run in production, they start to
experience issues when multiple users perform operations. When using optimistic
concurrency, the main problem is transactional failures. When using locking, the problem is
slowness and timeouts.

Let's consider some radical examples. When using optimistic concurrency, imagine that the
whole Domain is versioned, and each operation on any Entity creates a new version for the
whole Domain. With this scenario, if two users were performing different operations on
different Entities that couldn't be related at all, the second request would experience a
transaction failure because of a different version. On the other hand, when using pessimistic
concurrency, imagine a scenario where we lock the database on each operation. That would
block all the users until the lock is released. This means many requests would be waiting,
and at some point, probably timed out. Both of these examples keep data consistent, but the
application can't be used by more than one user.

Last but not least, when designing big Aggregates, because they may hold collections of
Entities, it's important to consider the performance implications of loading such collections
in memory. Even using an ORM such as Doctrine, which can lazy load collections (load
collections only when they are needed), if a collection is too big, it can't fit into memory.



Aggregates

[ 224 ]

Reference Other Entities by Identity
When two Entities don't form an Aggregate but are related, the best option to have Entities
reference one another is by using Identities. Identities were already explained in the Chapter
4, Entities.

Consider a User and their Orders, and assume we haven't found any true invariant. User
and Order wouldn't be part of the same Aggregate. If you need to know which User owns
a specific Order, you can probably ask the Order what its UserId is. UserId is a Value
Object that holds the User Identity. We get the whole User by using its Repository, the
UserRepository. This code generally lives in the Application Service.

As a general explanation, each Aggregate has its own Repository. If you've fetched a
specific Aggregate and you need to fetch another related Aggregate, you'll do it in your
Application Services or Domain Services. The Application Service will depend on
Repositories to fetch the Aggregates needed.

Jumping from one Aggregate to another is what's generally called traversing or navigating
your Domain. With ORMs, it's easy to do it by mapping all the relations between your
Entities. However, it's also really dangerous, as you can easily end up running countless
queries in a specific feature. As a rule, you shouldn't do this. Don't map all the relations
between your Entities because you can. Instead, only map the relations between Entities
inside an Aggregate in your ORM if two Entities form an Aggregate. If this isn't the case,
you'll use Repositories to get referenced Aggregates.

Modify One Aggregate Per Transaction and
Request
Consider the following scenario: you make a request, it gets into your controller, and it
intends to update two different Aggregates. Each Aggregate keeps the data consistent
within that Aggregate. However, what would happen if the request goes well over the first
Aggregate update but suddenly stops (server restarted, reloaded, out of memory, and so
on.) and the second Aggregate isn't updated? Is that a data consistency issue? It may be.
Let's consider some solutions.



Aggregates

[ 225 ]

From Vaughn Vernon's Implementing Domain-Driven Design:

In a properly designed Bounded Context modifies only one Aggregate instance
per transaction in all cases. What is more, we cannot correctly reason on
Aggregate design without applying transactional analysis. Limiting modification
to one Aggregate instance per transaction may sound overly strict. However, it is
a rule of thumb and should be the goal in most cases. It addresses the very reason
to use Aggregates.

If, in a single request, you need to update two Aggregates, it may just be that those two
Aggregates are a single one and they need to both be updated in the same transaction. If
not, you can wrap the entire request in a transaction, but we wouldn't recommend this as
the main option because of the performance issues and the transaction errors involved.

If both updates on different Aggregates don't need to be wrapped into a transaction, this
means we can assume some delay between one update and the other. In such a scenario, a
more Domain-Driven Design approach is to use Domain Events. When doing so, the first
Aggregate update will fire a Domain Event. That event will be persisted in the same
transaction as the Aggregate update and then published into our message queue. Later, a
worker will take the event from the queue and perform the second Aggregate update. Such
an approach pushes for Eventual Consistency, reduces the size of the transaction
boundaries, improves performance, and reduces transaction errors.

Sample Application Service: User and
Wishes
Now you know the basic rules for Aggregate Design.

The best way to learn about Aggregates is by seeing code. So let's consider the scenario of a
web application where users can make wishes to be granted if something happens to them,
similar to a will. For example, I would like to send an email to my wife explaining what to
do with my GitHub account if I die in a horrible accident, or maybe I want to send an email
telling her how much I loved her. The way to check that I'm still alive is to answer emails
the platform sends to me. (If you want to know more about this application, you can
visit our GitHub account. So we have users and their wishes. Let's consider only one use
case: "As a User, I want to make a Wish." How could we model this? Using good practices
when designing Aggregates, let's try to push for small Aggregates. In this case, that means
using two different Aggregates of one Entity each, User and Wish. For the relationship
between them, we should use an identifier, such as UserId.

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
https://github.com/dddinphp/last-wishes
https://github.com/dddinphp


Aggregates

[ 226 ]

No Invariant, Two Aggregates
We'll discuss Application Services in the following chapters, but for now, let's check
different approaches for making a Wish. The first approach, particularly for a novice, would
likely be something similar to this:

class MakeWishService
{
    private $wishRepository;

    public function __construct(WishRepository $wishRepository)
    {
        $this->wishRepository = $wishRepository;
    }

    public function execute(MakeWishRequest $request)
    {
        $userId = $request->userId();
        $address = $request->address();
        $content = $request->content();

        $wish = new Wish(
            $this->wishRepository->nextIdentity(),
            new UserId($userId),
            $address,
            $content
        );

        $this->wishRepository->add($wish);
    }
}

This code probably allows for the best performance possible. You can almost see the
INSERT statement behind the scenes; the minimum number of operations for such a use
case is one, which is good. With the current implementation, we can create as many wishes
as we want, according to the business requirements, which is also good.

However, there may be a potential issue: we can create wishes for a user who may not exist
in the Domain. This is a problem, regardless of what technology we're using for persisting
Aggregates. Even if we're using an in-memory implementation, we can create a Wish
without its corresponding User.

This is broken business logic. Of course, this can be fixed using a foreign key in the
database, from wish (user_id) to user(id), but what happens if we're not using a
database with foreign keys? And what happens if it's a NoSQL database, such as Redis or
Elasticsearch?



Aggregates

[ 227 ]

If we want to fix this issue so that the same code can work properly in different
infrastructures, we need to check if the user exists. It's likely that the easiest approach is in
the same Application Service:

class MakeWishService
{
    // ...
    public function execute(MakeWishRequest $request)
    {
        $userId = $request->userId();
        $address = $request->address();
        $content = $request->content();

        $user = $this->userRepository->ofId(new UserId($userId));
        if (null === $user) {
            throw new UserDoesNotExistException();
        }

        $wish = new Wish(
            $this->wishRepository->nextIdentity(),
            $user->id(),
            $address,
            $content
        );

        $this->wishRepository->add($wish);
    }
}

That could work, but there's a problem performing the check in the Application Service: this
check is high in the delegation chain. If any other code snippet that isn't this Application
Service — such as a Domain Service or another Entity — wants to create a Wish for a non-
existing User, it can do it. Take a look at the following code:

// Somewhere in a Domain Service or Entity
$nonExistingUserId = new UserId('non-existing-user-id');
    $wish = new Wish(
        $this->wishRepository->nextIdentity(),
        $nonExistingUserId,
        $address,
        $content
);

If you've already read Chapter 9, Factories, then you have the solution. Factories help us
keep the business invariants, and that's exactly what we need here.



Aggregates

[ 228 ]

There's an implicit invariant saying that we're not allowed to make a wish without a valid
user. Let's see how a factory can help us:

abstract class WishService
{
    protected $userRepository;
    protected $wishRepository;

    public function __construct(
        UserRepository $userRepository,
        WishRepository $wishRepository
    ) {
        $this->userRepository = $userRepository;
        $this->wishRepository = $wishRepository;
    }

    protected function findUserOrFail($userId)
    {
        $user = $this->userRepository->ofId(new UserId($userId));
        if (null === $user) {
            throw new UserDoesNotExistException();
        }

        return $user;
    }

    protected function findWishOrFail($wishId)
    {
        $wish = $this->wishRepository->ofId(new WishId($wishId));
        if (!$wish) {
            throw new WishDoesNotExistException();
        }

        return $wish;
    }

    protected function checkIfUserOwnsWish(User $user, Wish $wish)
    {
        if (!$wish->userId()->equals($user->id())) {
            throw new \InvalidArgumentException(
                'User is not authorized to update this wish'
            );
        }
    }
}

class MakeWishService extends WishService
{



Aggregates

[ 229 ]

    public function execute(MakeWishRequest $request)
    {
        $userId = $request->userId();
        $address = $request->address();
        $content = $request->content();

        $user = $this->findUserOrFail($userId);

        $wish = $user->makeWish(
            $this->wishRepository->nextIdentity(),
            $address,
            $content
        );

        $this->wishRepository->add($wish);
    }
}

As you can see, Users make Wishes, and so does our code. makeWish is a Factory Method
for building Wishes. The method returns a new Wish built with the UserId from the
owner:

class User
{
    // ...

    /**
     * @return Wish
     */
    public function makeWish(WishId $wishId, $address, $content)
    {
        return new Wish(
            $wishId,
            $this->id(),
            $address,
            $content
        );
    }

    // ...
}



Aggregates

[ 230 ]

Why are we returning a Wish and not just adding the new Wish to an internal collection as
we would do with Doctrine? To summarize, in this scenario, User and Wish don't conform
to an Aggregate because there's no true business invariant to protect. A User can add and
remove as many Wishes as they want. Wishes and their User can be updated
independently in the database in different transactions, if needed.

Following the rules about Aggregate Design explained before, we should aim for small
Aggregates, and that's the result here. Each Entity has its own Repository. Wish references
its owning User using Identities — UserId in this case. Getting all the wishes of a user can
be performed by a finder in the WishRepository and paginated easily without any
performance issues:

interface WishRepository
{
    /**
     * @param WishId $wishId
     *
     * @return Wish
     */
    public function ofId(WishId $wishId);

    /**
     * @param UserId $userId
     *
     * @return Wish[]
     */
    public function ofUserId(UserId $userId);

    /**
     * @param Wish $wish
     */
    public function add(Wish $wish);

    /**
     * @param Wish $wish
     */
    public function remove(Wish $wish);

    /**
     * @return WishId
     */
    public function nextIdentity();
}



Aggregates

[ 231 ]

An interesting aspect of this approach is that we don't have to map the relation between
User and Wish in our favorite ORM. Because we reference the User from the Wish using
the UserId, we just need the Repositories. Let's consider how the mapping of such Entities
using Doctrine might appear:

Lw\Domain\Model\User\User:
    type: entity
    id:
        userId:
            column: id
            type: UserId
    table: user
    repositoryClass:
        Lw\Infrastructure\Domain\Model\User\DoctrineUser\Repository
    fields:
        email:
            type: string
        password:
            type: string

Lw\Domain\Model\Wish\Wish:
    type: entity
    table: wish
    repositoryClass:
        Lw\Infrastructure\Domain\Model\Wish\DoctrineWish\Repository
    id:
        wishId:
            column: id
            type: WishId
    fields:
        address:
            type: string
        content:
            type: text
        userId:
            type: UserId
        column: user_id



Aggregates

[ 232 ]

No relation is defined. After making a new wish, let's write some code for updating an
existing one:

class UpdateWishService extends WishService
{
    public function execute(UpdateWishRequest $request)
    {
        $userId = $request->userId();
        $wishId = $request->wishId();
        $email = $request->email();
        $content = $request->content();

        $user = $this->findUserOrFail($userId);
        $wish = $this->findWishOrFail($wishId);
        $this->checkIfUserOwnsWish($user, $wish);

        $wish->changeContent($content);
        $wish->changeAddress($email);
    }
}

Because User and Wish don't form an Aggregate, in order to update the Wish, we need first
to retrieve it using the WishRepository. Some extra checks ensure that only the owner can
update the wish. As you may have seen, $wish is already an existing Entity in our Domain,
so there's no need to add it back again using the Repository. However, in order to make
changes durable, our ORM must be aware of the information updated and flush any
remaining changes to the database after the work is done. Don't worry; we'll take a look
closer at this in Chapter 11, Application. In order to complete the example, let's take a look
at how to remove a wish:

class RemoveWishService extends WishService
{
    public function execute(RemoveWishRequest $request)
    {
        $userId = $request->userId();
        $wishId = $request->wishId();

        $user = $this->findUserOrFail($userId);
        $wish = $this->findWishOrFail($wishId);
        $this->checkIfUserOwnsWish($user, $wish);

        $this->wishRepository->remove($wish);
    }
}



Aggregates

[ 233 ]

As you may have seen, you could refactor some parts of the code, such as the constructor
and the ownership checks, to reuse them in both Application Services. Feel free to consider
how you would do that. Last but not least, how could we get all the wishes of a specific
user:

class ViewWishesService extends WishService
{
    /**
     * @return Wish[]
     */
    public function execute(ViewWishesRequest $request)
    {
        $userId = $request->userId();
        $wishId = $request->wishId();

        $user = $this->findUserOrFail($userId);
        $wish = $this->findWishOrFail($wishId);
        $this->checkIfUserOwnsWish($user, $wish);

        return $this->wishRepository->ofUserId($user->id());
     }
}

This is quite straightforward. However, we'll go deeper into how to render and return
information from Application Services in the corresponding chapter. For now, returning a
collection of Wishes will do the job.
Let's sum up this non-Aggregate approach. We couldn't find any true business invariant to
consider User and Wish as an Aggregate, which is why each of them is an Aggregate. User
has its own Repository, UserRepository. Wish has its own Repository too,
WishRepository. Each Wish holds a UserId reference to owner, User. Even so, we didn't
require a transaction. That's the best scenario in terms of performance and scalability issues.
However, life is not always so wonderful. Consider what could happen with a true business
invariant.

No More Than Three Wishes Per User
Our application is a huge success and now it's time to get some money from it. We want
new users to have a maximum of three wishes available. As a user, if you want to have
more wishes, you'll probably have to pay for a premium account in the future. Let's see how
we could change our code to follow the new business rule about the maximum number of
wishes (in this instance, don't consider the premium user).



Aggregates

[ 234 ]

Consider the following code for a moment. Apart from what was explained in the previous
section about pushing logic into our Entities, could the following code work:

class MakeWishService
{
   // ...

    public function execute(MakeWishRequest $request)
    {
        $userId = $request->userId();
        $address = $request->email();
        $content = $request->content();

        $count = $this->wishRepository->numberOfWishesByUserId(
            new UserId($userId)
        );
        if ($count >= 3) {
            throw new MaxNumberOfWishesExceededException();
        }

        $wish = new Wish(
            $this->wishRepository->nextIdentity(),
            new UserId($userId),
            $address,
            $content
        );

        $this->wishRepository->add($wish);
    }
}

It looks like it could. That was easy — probably too easy. And here we come across different
problems. The first is that Application Services must coordinate but shouldn't contain
business logic. Instead, a better place is to put the check for the maximum three wishes into
the User, where we could have more control of the relationship between User and Wish.
However, for the approach shown here, the code seems to work.



Aggregates

[ 235 ]

The second problem is that it doesn't work under race conditions. Forget about Domain-
Driven Design for a moment. What's the problem with this code under heavy traffic? Think
for a minute. Is it possible to break the rule of a User to have more than three wishes? Why
will your QA be so happy after running some stress tests?

Your QA tries making a wish feature two times and ends up with a user with two wishes.
That's correct. Your QA carries on testing the feature. Imagine for a second that they open
two tabs in their browser, fill out each of the forms in each tab, and manage to submit the
two buttons at the same time. Suddenly, after two requests, the user ends up with four
wishes in the database. That's wrong! What happened?

Think as a debugger and consider two different requests getting the if ($count > 3) {
line at the same time. Both of the requests will return false because the user has just two
wishes. So both requests will create the Wish and both of the requests will add it into the
database. The result is four wishes for one User. That's an inconsistency!

We know what you're thinking. It's because we missed putting everything into a
transaction. Well, imagine that a user with id 1 already has two wishes, so there's one
remaining. Two HTTP requests to create two different wishes arrive at the same time. We
start one database transaction per request (we'll review how to deal with transactions and
requests in Chapter 11, Application). Consider all the queries that the previous PHP code is
going to run against our database. Remember that you need to disable any auto-commit
flag if you're using any Visual Database Tool:



Aggregates

[ 236 ]

How many wishes does the user with id 1 have? That's right, four. How did this happen? If
you take this SQL block and execute it line by line in two different connections, you'll see
how the wishes table is going to have four rows at the end of both executions. So it looks
like it's not about protecting with a transaction. How could we fix this issue? As explained
in the introduction, a concurrency control could help.

For those developers more advanced in database techniques, tweaking the isolation level
could work. However, we consider that option too complex, as the problem could be solved
with other approaches, and we're not always dealing with databases.

Pessimistic Concurrency Control
There's an important consideration when placing locks: any other connection trying to
update or query the same data is going to hang until the lock is released. Locks can easily
generate most of the performance problems. In MySQL, for example, there are different
options for placing locks: explicit locking tables UN/LOCK tables, and locking reads
SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE.



Aggregates

[ 237 ]

As we already shared above in the beginning, according to the book Elasticsearch: The
Definitive Guide by Clinton Gormley and Zachary Tong:

Widely used by relational databases, this approach assumes that conflicting changes
are likely to happen and so blocks access to a resource in order to prevent conflicts. A
typical example is locking a row before reading its data, ensuring that only the thread
that placed the lock is able to make changes to the data in that row.

We could LOCK the table, but we consider such an approach complex and risky. When using
locks, you have to be careful because you can end up with situations where two threads or
requests are waiting for the other one to release the lock. This is what's called a deadlock.

Based on our experience, some developers use SELECT ... FOR UPDATE approaches. Let's
see the same two request scenarios with this option:

https://github.com/elastic/elasticsearch-definitive-guide/blob/master/030_Data/40_Version_control.asciidoc
https://github.com/elastic/elasticsearch-definitive-guide/blob/master/030_Data/40_Version_control.asciidoc
http://dev.mysql.com/doc/refman/5.7/en/lock-tables.html


Aggregates

[ 238 ]

As you can see, after the COMMIT of the first request, the count of the number of wishes of
the second request is three. That's consistent, but the second request was waiting while the
lock wasn't released. That means that in an environment with a lot of requests, it may
generate performance issues. If the first request takes too much time to release the lock, the
second request may fail due to a timeout:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

The above looks like it's a valid option, but we need to be aware of the possible
performance issues. Is there any other alternative?

Optimistic Concurrency Control
There's another alternative: not using locks at all. Consider adding a version attribute to our
Aggregates. When we persist them, the persistence engine sets 1 as the version of the
persisted Aggregate. Later, we retrieve the same Aggregate and perform some changes to it.
We persist the Aggregate. The persistence engine checks that the version we have is the
same as the one that's currently persisted, version 1. The persistence engine persists the
Aggregate with the new state and updates its version to 2. If multiple requests retrieve the
same Aggregate, make some changes to it, and then try to persist it, the first request will
work, and the second will experiment and error. The last request just changed an outdated
version, so the persistence engine throws an error. However, the second request can try to
retrieve the Aggregate again, merge the new status, attempt to perform the changes, and
then persist the Aggregate.

According to Elasticsearch: The Definitive Guide:

This approach assumes that conflicts are unlikely to happen and does not block
operations from being attempted. However, if the underlying data has been
modified between reading and writing, the update will fail. It is then up to the
application to decide how it should resolve the conflict. For instance, it could
reattempt the update, using the fresh data, or it could report the situation to the
user.

This idea was covered before, but it bears repeating. If you try to apply Optimistic
Concurrency to this scenario where we're checking maximum wishes in the Application
Service, it's not going to work. Why? We're making a new wish, so two requests would
create two different wishes. How can we make it work? Well, we need an object to
centralize adding the wishes. We could apply the Optimistic Concurrency trick on that
object, so it looks like we need a parent object that will hold wishes. Any ideas?

https://github.com/elastic/elasticsearch-definitive-guide/blob/master/030_Data/40_Version_control.asciidoc


Aggregates

[ 239 ]

To summarize, after reviewing concurrency controls, there's a pessimistic option working,
but there are some concerns about performance impact. There's an optimistic option, but we
need to find a parent object. Let's consider the final MakeWishService, but with some
modifications:

class WishAggregateService
{
    protected $userRepository;

    public function __construct(UserRepository $userRepository)
    {
        $this->userRepository = $userRepository;
    }

    protected function findUserOrFail($userId)
    {
        $user = $this->userRepository->ofId(new UserId($userId));
        if (null === $user) {
            throw new UserDoesNotExistException();
        }

        return $user;
    }
}

class MakeWishService extends WishAggregateService
{
    public function execute(MakeWishRequest $request)
    {
        $userId = $request->userId();
        $address = $request->address();
        $content = $request->content();

        $user = $this->findUserOrFail($userId);

        $user->makeWish($address, $content);

        // Uncomment if your ORM can not flush
        // the changes at the end of the request
        // $this->userRepository->add($user);
    }
}



Aggregates

[ 240 ]

We don't pass the WishId because it should be something internal to the User. makeWish
doesn't return a Wish either; it stores the new wish internally. After the execution of the
Application Service, our ORM will flush the changes performed on the $user to the
database. Depending on how good our ORM is, we may need to explicitly add our User
Entity again using the Repository. What changes to the User class are needed? First of all,
there should be a collection that could hold all the wishes inside a user:

class User
{
    // ...

    /**
     * @var ArrayCollection
     */
    protected $wishes;

    public function __construct(UserId $userId, $email, $password)
    {
        // ...
        $this->wishes = new ArrayCollection();
        // ...
    }

    // ...
}

The wishes property must be initialized in the User constructor. We could use a plain PHP
array, but we've chosen to use an ArrayCollection. ArrayCollection is a PHP array
with some extra features provided by the Doctrine Common Library, and it can be used
separate from the ORM. We know that some of you may think that this could be a
boundary leaking and that no references to any infrastructure should be here, but we really
believe that's not the case. In fact, the same code works using plain PHP arrays. Let's see
how the makeWish implementation is affected:

class User
{
    // ...

    /**
     * @return void
     */
    public function makeWish($address, $content)
    {
        if (count($this->wishes) >= 3) {
            throw new MaxNumberOfWishesExceededException();
        }



Aggregates

[ 241 ]

        $this->wishes[] = new Wish(
            new WishId,
            $this->id(),
            $address,
            $content
        );
    }

    // ...
}

So far, so good. Now, it's time to review how the rest of the operations are implemented.

Pushing for Eventual Consistency
It looks like the business doesn't want a user to have more than three
wishes. That's going to force us to consider User as the root Aggregate
with Wish inside. This will affect our design, performance, scalability
issues, and so on. Consider what would happen if we could just let users
add as many wishes as they wanted, beyond the limit. We could check
who is exceeding that limit and let them know they need to purchase a
premium account. Allowing a user to go over the limit and warning them
by telephone afterward would be a really nice commercial strategy. That
might even allow the developers on your team to avoid designing User
and Wish as part of the same Aggregate, with User as its root. You've
already seen the benefits of not designing a single Aggregate: maximum
performance.

class UpdateWishService extends WishAggregateService
{
    public function execute(UpdateWishRequest $request)
    {
        $userId = $request->userId();
        $wishId = $request->wishId();
        $email = $request->email();
        $content = $request->content();

        $user = $this->findUserOrFail($userId);

        $user->updateWish(new WishId($wishId), $email, $content);
    }
}



Aggregates

[ 242 ]

Because User and Wish now form an Aggregate, the Wish to be updated is no longer
retrieved using the WishRepository. We fetch the user using the UserRepository. The
operation of updating a Wish is performed via the root Entity, which is the User in this
case. The WishId is necessary in order to identify which Wish we want to update:

class User
{
    // ...

    public function updateWish(WishId $wishId, $email, $content)
    {
        foreach ($this->wishes as $wish) {
            if ($wish->id()->equals($wishId)) {
                $wish->changeContent($content);
                $wish->changeAddress($address);
                break;
            }
        }
    }
}

Depending on the features of your framework, this task may or may not be cheaper to
perform. Iterating through all the wishes could mean making too many queries, or even
worse, fetching too many rows, which will create a huge impact on memory. In fact, that's
one of the main problems of having big Aggregates. So let's consider how to remove a Wish:

class RemoveWishService extends WishAggregateService
{
    public function execute(RemoveWishRequest $request)
    {
        $userId = $request->userId();
        $wishId = $request->wishId();

        $user = $this->findUserOrFail($userId);

        $user->removeWish($wishId):
    }
}



Aggregates

[ 243 ]

As seen before, WishRepository is no longer necessary. We fetch the User using its
Repository and perform the action of removing a Wish. In order to remove a Wish, we need
to remove it from the inner collection. An option would be iterating through all the
elements and matching the one with the same WishId:

class User
{
    // ...

    public function removeWish(WishId $wishId)
    {
        foreach ($this->wishes as $k => $wish) {
            if ($wish->id()->equals($wishId)) {
                unset($this->wishes[$k]);
                break;
            }
        }
    }

    // ...
}

That's probably the most ORM-agnostic code possible. However, behind the scenes,
Doctrine is fetching all the wishes and iterating through all of them. A more specific
approach to fetch only the Entity needed that isn't so ORM agnostic would be the following:
Doctrine mapping must also be updated in order to make all the magic work as expected.
While the Wish mapping remains the same, the User mapping has the new oneToMany
unidirectional relationship:

Lw\Domain\Model\Wish\Wish:
    type: entity
    table: lw_wish
    repositoryClass:
        Lw\Infrastructure\Domain\Model\Wish\DoctrineWish\Repository
    id:
        wishId:
            column: id
            type: WishId
     fields:
         address:
             type: string
         content:
             type: text
         userId:
             type: UserId
             column: user_id



Aggregates

[ 244 ]

Lw\Domain\Model\User\User:
    type: entity
    id:
    userId:
        column: id
        type: UserId
    table: user
    repositoryClass:
        Lw\Infrastructure\Domain\Model\User\DoctrineUser\Repository
    fields:
        email:
            type: string
        password:
            type: string
    manyToMany:
        wishes:
            orphanRemoval: true
            cascade: ["all"]
            targetEntity: Lw\Domain\Model\Wish\Wish
            joinTable:
                name: user_wishes
                joinColumns:
                    user_id:
                        referencedColumnName: id
                inverseJoinColumns:
                    wish_id:
                        referencedColumnName: id
                        unique: true

In the code above, there are two important configurations: orphanRemoval and cascade.
According to the Doctrine 2 ORM Documentation on orphan removal and transitive
persistence / cascade operations:

If an Entity of type A contains references to privately owned Entities B then if the
reference from A to B is removed the entity B should also be removed, because it
is not used anymore. OrphanRemoval works with one-to-one, one-to-many and
many-to-many associations. When using the orphanRemoval=true option
Doctrine makes the assumption that the entities are privately owned and will NOT
be reused by other entities. If you neglect this assumption your entities will get
deleted by Doctrine even if you assigned the orphaned entity to another one.

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/working-with-associations.html#orphan-removal
http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/working-with-associations.html#transitive-persistence-cascade-operations
http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/working-with-associations.html#transitive-persistence-cascade-operations


Aggregates

[ 245 ]

Persisting, removing, detaching, refreshing and merging individual entities can
become pretty cumbersome, especially when a highly interweaved object graph is
involved. Therefore Doctrine 2 provides a mechanism for transitive persistence
through cascading of these operations. Each association to another entity or a
collection of entities can be configured to automatically cascade certain
operations. By default, no operations are cascaded.

For more information, please take a closer look at the Doctrine 2 ORM 2 Documentation on
working with associations.

Finally, let's see how we can get the wishes from a user:

class ViewWishesService extends WishService
{
    /**
     * @return Wish[]
     */
    public function execute(ViewWishesRequest $request)
    {
        return $this
            ->findUserOrFail($request->userId())
            ->wishes();
    }
}

As mentioned before, especially in this scenario using Aggregates, returning a
collection of Wishes is not the best solution. You should never return Domain Entities,
as this will prevent code outside of your Application Services — such as Controllers or
your UI — from unexpectedly modifying them. With Aggregates, it makes even more
sense. Entities that aren't root — the ones that belong to the Aggregate but aren't root
 — should appear private to others outside.

We'll go deeper into this in the Chapter 11, Application. For now, to summarize, you have
different options:

The Application Service returns a DTO build accessing Aggregates information.
The Application Service returns a DTO returned by the Aggregate.
The Application Service uses an Output dependency where it writes the
Aggregate. Such an Output dependency will handle the transformation to a DTO
or other format.

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/working-with-associations.html


Aggregates

[ 246 ]

Render the Number of Wishes  As an exercise, consider that we want to
render the number of wishes a user has made on their account page. How
would you implement this, considering User and Wish don't form an
Aggregate? How would you implement it if User and Wish did form an
Aggregate? Consider how Eventual Consistency could help in your
solutions.

Transactions
We haven't shown beginTransaction, commit, or rollback in any of the examples. This
is because transactions are handled at Application Service level. Don't worry for now; you'll
find more details about this in Chapter 11, Application.

Wrap Up
Aggregates are all about persistence and transactions. In fact, you can't design Aggregates
without thinking about how they're going to be persisted. The basic rules to design proper
Aggregates are: make them small, find true business invariants, push for eventual
consistency using Domain Events, reference other Aggregates by Identity, and modify one
Aggregate per request. Review how the code changes if two Entities form a single
Aggregate or not. Use factories to enrich your Entities. Finally, relax. In most of the PHP
applications we've seen, only five percent of the Entities were Aggregates formed by two
Entities or more. Discuss with your workmates when designing and implementing
Aggregates.



9
Factories

Factories are a powerful abstraction. They help decouple the client from the details of how
to interact with the Domain. The client doesn't need to know how to build complex objects
and Aggregates, so you can use Factories to create whole Aggregates, thereby enforcing
their invariants.

Factory Method on Aggregate Root
The Factory Method pattern, as defined in the classic, Gang of Four, is a creational pattern
that:

Defines an interface for creating an object, but leaves the choice of its type to the subclasses,
creation being deferred at run-time.

Adding a Factory Method in the Aggregate Root hides the internal implementation details
of creating Aggregates from any external client. This also moves the responsibility for the
integrity of the Aggregate back to the root.

In a Domain Model where we have a User Entity and a Wish Entity, the User acts as the
Aggregate root. There's no Wish without User. The User Entity should manage its
Aggregates.

https://en.wikipedia.org/wiki/Factory_method_pattern
http://wiki.c2.com/?GangOfFour


Factories

[ 248 ]

The way to move the control of Wish back to the User Entity is by placing a Factory method
in the Aggregate root:

class User
{
    // ...

    public function makeWish(WishId $wishId, $email, $content)
    {
        $wish = new WishEmail(
            $wishId,
            $this->id(),
            $email,
            $content
        );

        DomainEventPublisher::instance()->publish(
            new WishMade($wishId)
        );

        return $wish;
    }
}

The client doesn't need to know the internal details of how the Aggregate Root handles the
creation logic:

 $wish = $aUser->makeWish(
     $wishRepository->nextIdentity(),
     'user@example.com',
     'I want to be free!'
 );

Forcing Invariants
Factory Methods in the Aggregate Root are also a good place for invariants.

In a Domain Model with Forum and Post Entities, where Post is an aggregated part of the
Aggregate Root Forum, publishing a Post could look something like this:

class Forum
{
    // ...

    public function publishPost(PostId $postId, $content)
    {



Factories

[ 249 ]

        $post = new Post($this->id, $postId, $content);

        DomainEventPublisher::instance()->publish(
            new PostPublished($postId)
        );

        return $post;
    }
 }

After talking with a Domain Expert, we came to the conclusion that a Post shouldn't be
published when the Forum is closed. This is an invariant, and we could force it directly on
Post creation, thereby preventing an inconsistent Domain state:

class Forum
{
     // ...

    public function publishPost(PostId $postId, $content)
    {
        if ($this->isClosed()) {
            throw new ForumClosedException();
        }

        $post = new Post($this->id, $postId, $content);

        DomainEventPublisher::instance()->publish(
            new PostPublished($postId)
        );

        return $post;
    }
}

Factory on Service
Decoupling creation logic also comes in handy in our Services.

Building Specifications
Using Specifications in our Services might be the best example to illustrate how to use
Factories within our Services.



Factories

[ 250 ]

Consider the following Service example. Given a request from the outside world, we want
to build a feed based on the latest Posts added to the system:

namespace Application\Service;

use Domain\Model\Post;
use Domain\Model\PostRepository;

class LatestPostsFeedService
{
    private $postRepository;

    public function __construct(PostRepository $postRepository)
    {
        $this->postRepository = $postRepository;
    }

    /**
     * @param LatestPostsFeedRequest $request
     */
    public function execute($request)
    {
        $posts = $this->postRepository->latestPosts($request->since);

        return array_map(function(Post $post) {
            return [
                'id' => $post->id()->id(),
                'content' => $post->body()->content(),
                'created_at' => $post-> createdAt()
            ];
        }, $posts);
    }
}

Finder methods in Repositories like latestPosts have some limitations, as they keep
adding complexity to our Repositories indefinitely. As we discuss in the Chapter 10,
Repositories Specifications are a better approach.

Lucky for us, we have a nice query method in our PostRepository that works with
Specifications:

class LatestPostsFeedService
{
    // ...

    public function execute($request)
    {



Factories

[ 251 ]

        $posts = $this->postRepository->query($specification);
    }
}

Using a concrete implementation for the Specification is a bad idea:

class LatestPostsFeedService
{

    public function execute($request)
    {
        $posts = $this->postRepository->query(
            new SqlLatestPostSpecification($request->since)
        );
    }
}

Coupling our high-level application Service with a low-level Specification implementation
mixes layers and breaks the Separation of Concerns. In addition, this is a pretty bad way of
coupling our Service to a concrete Infrastructure implementation. There's no way you could
use this Service outside of the SQL persistence solution. What if we want to test our Service
with an in-memory implementation?

The solution to this problem is to decouple Specification creation from the Service itself by
using the Abstract Factory pattern. According to OODesign.com:

Abstract Factory offers the interface for creating a family of related objects,
without explicitly specifying their classes.

As we might have multiple Specification implementations, we first need to create an
interface for the Factory:

namespace Domain\Model;

interface PostSpecificationFactory
{
    public function createLatestPosts(DateTimeImmutable $since);
}

https://en.wikipedia.org/wiki/Abstract_factory_pattern
http://www.oodesign.com/abstract-factory-pattern.html


Factories

[ 252 ]

Then we need to create Factories for each PostRepository implementation. As an
example, a Factory for the in-memory PostRepository implementation could look like
this:

namespace Infrastructure\Persistence\InMemory;

use Domain\Model\PostSpecificationFactory;

class InMemoryPostSpecificationFactory
    implements PostSpecificationFactory
{
    public function createLatestPosts(DateTimeImmutable $since)
    {
        return new InMemoryLatestPostSpecification($since);
    }
}

Once we have a centralized place for the creation logic, it's easy to decouple it from the
Service:

class LatestPostsFeedService
{
    private $postRepository;
    private $postSpecificationFactory;

    public function __construct(
        PostRepository $postRepository,
        PostSpecificationFactory $postSpecificationFactory
    ) {
        $this->postRepository = $postRepository;
        $this->postSpecificationFactory = $postSpecificationFactory;
    }

    public function execute($request)
    {
        $posts = $this->postRepository->query(
            $this->postSpecificationFactory->createLatestPosts(
                $request->since
            )
        );
    }
}



Factories

[ 253 ]

Now, unit testing our Service through an in-memory PostRepository implementation is
pretty easy:

namespace Application\Service;

use Domain\Model\Body;
use Domain\Model\Post;
use Domain\Model\PostId;
use Infrastructure\Persistence\InMemory\InMemoryPostRepositor;

class LatestPostsFeedServiceTest extends PHPUnit_Framework_TestCase
{
    /**
     * @var \Infrastructure\Persistence\InMemory\InMemoryPostRepository
     */
    private $postRepository;

    /**
     * @var LatestPostsFeedService
     */
    private $latestPostsFeedService;

    public function setUp()
    {
        $this->latestPostsFeedService = new LatestPostsFeedService(
            $this->postRepository = new InMemoryPostRepository()
        );
    }

   /**
    * @test
    */
    public function shouldBuildAFeedFromLatestPosts()
    {
        $this->addPost(1, 'first', '-2 hours');
        $this->addPost(2, 'second', '-3 hours');
        $this->addPost(3, 'third', '-5 hours');

        $feed = $this->latestPostsFeedService->execute(
            new LatestPostsFeedRequest(
                 new \DateTimeImmutable('-4 hours')
            )
        );

        $this->assertFeedContains([
            ['id' => 1, 'content' => 'first'],
            ['id' => 2, 'content' => 'second']
        ], $feed);



Factories

[ 254 ]

    }

    private function addPost($id, $content, $createdAt)
    {
        $this->postRepository->add(new Post(
            new PostId($id),
            new Body($content),
            new \DateTimeImmutable($createdAt)
        ));
    }

    private function assertFeedContains($expected, $feed)
    {
        foreach ($expected as $index => $contents) {
            $this->assertArraySubset($contents, $feed[$index]);
            $this->assertNotNull($feed[$index]['created_at']);
        }
    }
}

Building Aggregates
Entities are agnostic to the persistence mechanism. You don't want to couple and pollute
your Entities with persistence details. Take a look at the next Application Service:

class SignUpUserService
{
    private $userRepository;

    public function __construct(UserRepository $userRepository)
    {
        $this->userRepository = $userRepository;
    }

    /**
     * @param SignUpUserRequest $request
     */
    public function execute( $request)
    {
        $email = $request->email();
        $password = $request->password();

        $user = $this->userRepository->userOfEmail($email);
        if (null !== $user) {
            throw new UserAlreadyExistsException();
        }



Factories

[ 255 ]

        $this->userRepository->persist(new User(
            $this->userRepository->nextIdentity(),
            $email,
            $password
        ));

        return $user;
    }
}

Imagine a User Entity like the following one:

class User
{
    private $userId;
    private $email;
    private $password;

    public function __construct(UserId $userId, $email, $password)
    {
        // ...
    }

    // ...
 }

Imagine we want to use Doctrine as our Infrastructure persistence mechanism. Doctrine
requires having an id as a plain string instance variable in order to work properly. In our
Entity, $userId is a UserId Value Object. Adding an additional id to our User Entity just
because of Doctrine would couple our persistence mechanism with our Domain Model.
We saw in the Chapter 4, Entities that we could solve this problem with a Surrogate ID by
creating a wrapper around our User Entity in the Infrastructure layer:

class DoctrineUser extends User
{
    private $surrogateUserId;

    public function __construct(UserId $userId, $email, $password)
    {
        parent:: __construct($userId, $email, $password);
        $this->surrogateUserId = $userId->id();
    }
}

As creating the DoctrineUser in our Application Service would again couple the
persistence layer with our Domain, we need to decouple the creation logic out of the Service
with an Abstract Factory.



Factories

[ 256 ]

We could do this by creating an interface in our Domain:

interface UserFactory
{
    public function build(UserId $userId, $email, $password);
}

Then, we place the implementation of it inside our Infrastructure layer:

class DoctrineUserFactory implements UserFactory
{
    public function build(UserId $userId, $email, $password)
    {
        return new DoctrineUser($userId, $email, $password);
    }
}

Once decoupled, we only need to inject the Factory into our Application Service:

class SignUpUserService
{
    private $userRepository;
    private $userFactory;

    public function __construct(
        UserRepository $userRepository,
        UserFactory $userFactory
    ) {
        $this->userRepository = $userRepository;
        $this->userFactory = $userFactory;
    }

    /**
     * @param SignUpUserRequest $request
     */
    public function execute($request)
    {
        // ...
        $user = $this->userFactory->build(
            $this->userRepository->nextIdentity(),
            $email,
            $password
        );
        $this->userRepository->persist($user);
        return $user;
    }
}



Factories

[ 257 ]

Testing Factories
You'll see a common pattern while writing your tests. This is because building Entities and
complex Aggregates can be a very tedious and repetitive process. Inevitably, complexity
and duplication will start creeping into your test suite. Consider the following Entity:

class Author
{
    private $username;
    private $email ;
    private $fullName;

    public function __construct(
        Username $aUsername,
        FullName $aFullName,
        Email $anEmail
    ) {
        $this->username = $aUsername;
        $this->email = $anEmail ;
        $this->fullName = $aFullName;
    }

    // ...
}

Somewhere in your system, you'll end up with a test looking like this:

class MyTest extends PHPUnit_Framework_TestCase
{
    /**
     * @test
     */
    public function itDoesSomething()
    {
        $author = new Author(
            new Username('johndoe'),
            new FullName('John', 'Doe' ),
            new Email('john@doe.com' )
        );

        //do something with author
    }
}



Factories

[ 258 ]

Services inside boundaries share concepts like Entities, Aggregates, and Value Objects.
Imagine the clutter of repeating the same building logic over and over across your tests. As
we'll see, extracting the building logic out of tests comes in handy and prevents duplication.

Object Mother
An Object Mother is a catchy name for a Factory that creates fixed fixtures for your tests.
Similar to the previous example, we could extract the duplicated logic to an Object Mother
so it could be reused across tests:

class AuthorObjectMother
{
    public static function createOne()
    {
        return new Author(
            new Username('johndoe'),
            new FullName('John', 'Doe'),
            new Email('john@doe.com )
        );
    }
}

class MyTest extends PHPUnit_Framework_TestCase
{
    /**
     * @test
     */
    public function itDoesSomething()
    {
        $author = AuthorObjectMother::createOne();
    }
}

You'll notice that the more tests and situations you have, the more methods the Factory will
have.

As Object Mothers aren't very flexible, they tend to grow in complexity quickly. Luckily,
there's a more flexible alternative for your tests.

https://martinfowler.com/bliki/ObjectMother.html


Factories

[ 259 ]

Test Data Builder
Test Data Builders are just normal Builders with default values used exclusively in your test
suites so that you don't have to specify irrelevant parameters on specific test cases:

class AuthorBuilder
{
    private $username;
    private $email ;
    private $fullName;

    private function __construct()
    {
        $this->username = new Username('johndoe');
        $this->email = new Email('john@doe.com');
        $this->fullName = new FullName('John', 'Doe');
    }

    public static function anAuthor()
    {
        return new self();
    }

    public function withFullName(FullName $aFullName)
    {
        $this->fullName = $aFullName;

        return $this;
    }

    public function withUsername(Username $aUsername)
    {
        $this->username = $aUsername;

        return $this;
    }

    public function withEmail(Email $anEmail)
    {
        $this->email = $anEmail ;

        return $this;
    }

    public function build()
    {
        return new Author($this->username, $this->fullName, $this->email);
    }



Factories

[ 260 ]

}

class MyTest extends PHPUnit_Framework_TestCase
{
    /**
     * @test
     */
    public function itDoesSomething()
    {
        $author = AuthorBuilder::anAuthor()
            ->withEmail(new Email('other@email.com'))
            ->build();
    }
}

We could even combine Test Data Builders to build more complicated Aggregates, like a
Post:

class Post
{
    private $id;
    private $author;
    private $body;
    private $createdAt;

    public function __construct(
        PostId $anId, Author $anAuthor, Body $aBody
    ) {
        $this->id = $anId;
        $this->author = $anAuthor;
        $this->body = $aBody;
        $this->createdAt = new DateTimeImmutable();
    }
}

Let's see the corresponding Test Data Builder for our Post. We could reuse the
AuthorBuilder for building a default Author:

class PostBuilder
{
    private $postId;
    private $author;
    private $body;

    private function __construct()
    {
        $this->postId = new PostId();
        $this->author = AuthorBuilder::anAuthor()->build();



Factories

[ 261 ]

        $this->body = new Body('Post body');
    }

    public static function aPost()
    {
        return new self();
    }

    public function withAuthor(Author $anAuthor)
    {
        $this->author = $anAuthor;

        return $this;
    }

    public function withPostId(PostId $aPostId)
    {
        $this->postId = $aPostId;

        return $this;
    }

    public function withBody(Body $body)
    {
        $this->body = $body;

        return $this;
    }

    public function build()
    {
        return new Post($this->postId, $this->author, $this->body);
    }
}



Factories

[ 262 ]

This solution is now flexible enough to cover any test case, including the possibility of
building inner Entities:

class MyTest extends PHPUnit_Framework_TestCase
{
    /**
     * @test
     */
    public function itDoesSomething()
    {
        $post = PostBuilder::aPost()
            ->withAuthor(AuthorBuilder::anAuthor()
            ->withUsername(new Username('other'))
                ->build())
            ->withBody(new Body('Another body'))
                ->build();

        //do something with the post
    }
}

Wrap-Up
Factories are a powerful tool for decoupling construction logic from our business logic. The
Factory Method pattern not only helps by moving creation responsibility to the Aggregate
Root, but it could also force Domain invariants. Using the Abstract Factory pattern in our
Services allows us to separate our Domain logic from Infrastructure creation details. A
common use case is that of Specifications and their respective persistence implementations.
We've seen that Factories come in handy on our test suites too. While we could extract
building logic into Object Mother Factories, Test Data Builders provide more flexibility for
our tests.



10
Repositories

In order to interact with a Domain object, you need to hold a reference to it. One way of
achieving this is by creation. Alternatively, you can traverse an association. In Object-
Oriented programs, objects have links (references) to other objects, which makes them
easily traversable, thereby contributing to the expressive power of our models. But here's
the catch: you need a mechanism to retrieve the first object, the Aggregate Root.

Repositories act as storage locations, where a retrieved object is returned in the exact same
state it was persisted in. In Domain-Driven Design, every Aggregate type typically has a
unique associated Repository, which is used for its persistence and fetching needs.
However, in the case where it's required to share an Aggregate object hierarchy, the types
might share a Repository.

Once you've successfully retrieved the Aggregate from the Repository, every change you
make is persisted, which removes the need to go back to the Repository.



Repositories

[ 264 ]

Definition
Martin Fowler defines a Repository as:

The mechanism between the domain and data mapping layers, acting like an in-
memory domain object collection. Client objects construct query specifications
declaratively and submit them to Repository for satisfaction. Objects can be added
to and removed from the Repository, as they can from a simple collection of
objects, and the mapping code encapsulated by the Repository will carry out the
appropriate operations behind the scenes. Conceptually, a Repository
encapsulates the set of objects persisted in a data store and the operations
performed over them, providing a more object-oriented view of the persistence
layer. Repository also supports the objective of achieving a clean separation and
one-way dependency between the domain and data mapping layers.

Repositories Are Not DAOs
Data Access Objects (DAOs) are a common pattern for persisting Domain objects into the
database. It's easy to confuse the DAO pattern with a Repository. The significant difference
is that Repositories represent collections, while DAOs are closer to the database and are
often far more table-centric. Typically, a DAO would contain CRUD methods for a
particular Domain object. Let's see how a common interface for a DAO might look:

interface UserDAO
{
    /**
     * @param string $username
     * @return User
     */
    public function get($username);

    public function create(User $user);

    public function update(User $user);

    /**
     * @param string $username
     */
    public function delete($username);
}

http://martinfowler.com/eaaCatalog/repository.html


Repositories

[ 265 ]

A DAO interface could have multiple implementations, which could range from using
ORM constructions to using plain SQL queries. The main problem with DAOs is that their
responsibilities are not clearly defined. DAOs are usually perceived as gateways to the
database, so it's relatively easy to greatly decrease cohesion with many specific methods in
order to query the database:

interface BloatUserDAO
{
    public function get($username);

    public function create(User $user);

    public function update(User $user);

    public function delete($username);

    public function getUserByLastName($lastName);

    public function getUserByEmail($email);

    public function updateEmailAddress($username, $email);

    public function updateLastName($username, $lastName);
}

As you can see, the more we add new methods to implement, the harder it becomes to unit
test the DAO, and it becomes increasingly coupled to the User object. This problem will
grow over time, with many other contributors collaborating in making the Big Ball of Mud
even bigger.

Collection-Oriented Repositories
Repositories mimic a collection by implementing their common interface characteristics. As
a collection, a Repository shouldn't leak any intentions of persistence behavior, such as the
notion of saving to a store.

The underlying persistence mechanism has to support this need. You shouldn't be required
to handle changes to the objects over their lifetime. The collection references the most recent
changes to the object, meaning that upon each access, you get the latest object state.



Repositories

[ 266 ]

Repositories implement a concrete collection type, the Set. A Set is a data structure with an
invariant that doesn't contain duplicate entries. If you try to add an element that's already
present to a Set, it won't be added. This is useful in our use case, as each Aggregate has a
unique identity that's associated with the Root Entity.

Consider, for example, that we have the following Domain Model:

namespace Domain\Model;

class Post
{
    const EXPIRE_EDIT_TIME = 120; // seconds

    private $id;
    private $body;
    private $createdAt;

    public function __construct(PostId $anId, Body $aBody)
    {
        $this->id = $anId;
        $this->body = $aBody;
        $this->createdAt = new \DateTimeImmutable();
    }

    public function editBody(Body $aNewBody)
    {
        if($this->editExpired()) {
            throw new RuntimeException('Edit time expired');
        }

        $this->body = $aNewBody;
    }

    private function editExpired()
    {
        $expiringTime= $this->createdAt->getTimestamp() +
            self::EXPIRE_EDIT_TIME;

        return $expiringTime < time();
    }

    public function id()
    {
        return $this->id;
    }

    public function body()
    {



Repositories

[ 267 ]

       return $this->body;
    }

    public function createdAt()
    {
       return $this->createdAt;
    }
}

class Body
{
    const MIN_LENGTH = 3;
    const MAX_LENGTH = 250;

    private $content;

    public function __construct($content)
    {
        $this->setContent(trim($content));
    }

    private function setContent($content)
    {
        $this->assertNotEmpty($content);
        $this->assertFitsLength($content);

        $this->content = $content;
    }

    private function assertNotEmpty($content)
    {
        if(empty($content)) {
            throw new DomainException('Empty body');
        }
    }

    private function assertFitsLength($content)
    {
        if(strlen($content) < self::MIN_LENGTH) {
            throw new DomainException('Body is too short');
        }

        if(strlen($content) > self::MAX_LENGTH) {
            throw new DomainException('Body is too long');
        }
    }

    public function content()



Repositories

[ 268 ]

    {
        return $this->content;
    }
}

class PostId
{
    private $id;

    public function __construct($id = null)
    {
        $this->id = $id ?: uniqid();
    }

    public function id()
    {
        return $this->id;
    }

    public function equals(PostId $anId)
    {
       return $this->id === $anId->id();
    }
}

If we wanted to persist this Post Entity, a simple in-memory Post Repository could be
created like this:

class SimplePostRepository
{
    private $post = [];

    public add(Post $aPost)
    {
        $this->posts[(string) $aPost->id()] = $aPost;
    }

    public function postOfId(PostId $anId)
    {
        if (isset($this->posts[(string) $anId])) {
            return $this->posts[(string) $anId];
        }

        return null;
    }
}



Repositories

[ 269 ]

And, as you would expect, it's handled as a collection:

$id = new PostId();
$repository = new SimplePostRepository();
$repository->add(new Post($id, 'Random content'));

// later ...
$post = $repository->postOfId($id);
$post->editBody('Updated content');

// even later ...
$post = $repository->postOfId($id);
assert('Updated content' === $post->body());

As you can see, from the collection's point of view, there's no need for a save method in the
Repository. Changes affecting the object are correctly handled by the underlying persistence
layer. Collection-oriented Repositories are the ones that don't need to add an Aggregate that
was persisted before. This mainly happens with the Repositories that are memory based,
but we also have ways to do this with the Persisted-Oriented Repositories. We'll look at this
in a moment; additionally, we'll cover this more in depth in the Chapter 11, Application.

The first step to design a Repository is to define a collection-like interface for it. The
interface needs to define the usual collection methods, like so:

interface PostRepository
{
    public function add(Post $aPost);
    public function addAll(array $posts);
    public function remove(Post $aPost); 
    public function removeAll(array $posts);
    // ...
}

For implementing such an interface, you could also use an abstract class. In general, when
we talk about an interface, we refer to the general concept and not just the specific PHP
interface. To keep your design simple, don't add methods you don't need; the Repository
interface definition and its corresponding Aggregate should be placed in the same Module.

Sometimes remove doesn't physically delete the Aggregate from the database. This strategy
- where the Aggregate has a status field that's updated to a deleted value - is known as a soft
delete. Why is this approach interesting? It can be interesting for auditing changes and
performance. In those cases, you can instead mark the Aggregate as disabled or logically
removed. The interface could be updated accordingly by removing the removal methods or
providing disable behavior in the Repository.



Repositories

[ 270 ]

Another important aspect of Repositories are the finder methods, like the following:

interface PostRepository
{
    // ...

    /**
     * @return Post
     */
    public function postOfId(PostId $anId);

    /**
     * @return Post[]
     */
    public function latestPosts(DateTimeImmutable $sinceADate);
}

As we suggested in Chapter 4, Entities, we prefer Application-Generated Identities. The
best place to generate a new Identity for an Aggregate is its Repository. So to retrieve the
globally unique ID for a Post, a logical place to include it is in PostRepository:

interface PostRepository
{
    // ...

    /**
     * @return PostId
     */
    public function nextIdentity();
}

The code responsible for building up each Post instance calls nextIdentity to get a
unique identifier, PostId:

$post = newPost($postRepository->nextIdentity(), $body);

Some developers favor placing the implementation close to the interface definition as a
subpackage of the Module. However, because we want a clear Separation of Concerns, we
recommend instead placing it inside the Infrastructure layer.



Repositories

[ 271 ]

In-Memory Implementation
As Uncle Bob wrote in Screaming Architecture:

A good software architecture allows decisions about frameworks, databases, web-
servers, and other environmental issues and tools, to be deferred and delayed. A
good architecture makes it unnecessary to decide on Rails, or Spring, or
Hibernate, or Tomcat or MySql, until much later in the project. A good
architecture makes it easy to change your mind about those decisions too. A good
architecture emphasizes the use-cases and decouples them from peripheral
concerns.

In the early stages of your application, a fast in-memory implementation could come in
handy. It's something you could use to mature other parts of your system, allowing you to
delay database decisions to the correct moment. An in-memory Repository is simple, fast,
and easy to implement.

For our Post Repository, an in-memory hash map is enough to provide all the functionality
we need:

namespace Infrastructure\Persistence\InMemory;

use Domain\Model\Post;
use Domain\Model\PostId;
use Domain\Model\PostRepository;

class InMemoryPostRepository implements PostRepository
{
    private $posts = [];

    public function add(Post $aPost)
    {
       $this->posts[$aPost->id()->id()] = $aPost;
    }

    public function remove(Post $aPost)
    {
        unset($this->posts[$aPost->id()->id()]);
    }

    public function postOfId(PostId $anId)
    {
        if (isset($this->posts[$anId->id()])) {
            return $this->posts[$anId->id()];
        }

http://blog.8thlight.com/uncle-bob/2011/09/30/Screaming-Architecture.html


Repositories

[ 272 ]

        return null;
    }

    public function latestPosts(\DateTimeImmutable $sinceADate)
    {
        return $this->filterPosts(
           function (Post $post) use($sinceADate) {
               return $post->createdAt() > $sinceADate;
           }
        );
    }

    private function filterPosts(callable $fn)
    {
        return array_values(array_filter($this->posts, $fn));
    }

    public function nextIdentity()
    {
         return new PostId();
    }
}

Doctrine ORM
We've talked about Doctrine in past chapters quite a bit. Doctrine is a set of libraries for
database storage and object mapping. It comes bundled with the popular Symfony2 web
framework by default and, among other features, it allows you to easily decouple your
application from the persistence layer, thanks to the Data Mapper pattern.

Meanwhile, the ORM stands over a powerful database abstraction layer that enables
database interaction through an SQL dialect called Doctrine Query Language (DQL),
which is inspired by the famous Java Hibernate framework.

If we're going to use Doctrine ORM, the first task to complete is adding the dependencies to
our project through Composer:

composer require doctrine/orm 

http://www.doctrine-project.org/
http://symfony.com/
http://symfony.com/
http://martinfowler.com/eaaCatalog/dataMapper.html
https://getcomposer.org/


Repositories

[ 273 ]

Object Mapping
The mapping between your Domain objects and the database can be considered an
implementation detail. The Domain lifecycle shouldn't be aware of these persistence details.
As such, the mapping information should be defined as part of the Infrastructure layer,
outside the Domain, and as the implementation for the Repositories.

Doctrine Custom Mapping Types
As our Post Entity is composed of Value Objects like Body or PostId, it's a good idea to
make Custom Mapping Types or use Doctrine Embeddables for them, as seen in the Value
Objects chapter. This will make the object mapping considerably easier:

namespace Infrastructure\Persistence\Doctrine\Types;

use Doctrine\DBAL\Types\Type;
use Doctrine\DBAL\Platforms\AbstractPlatform;
use Domain\Model\Body;

class BodyType extends Type
{
    public function getSQLDeclaration(
        array $fieldDeclaration, AbstractPlatform $platform
    ) {
        return $platform->getVarcharTypeDeclarationSQL(
            $fieldDeclaration
        );
    }

    /**
     * @param string $value
     * @return Body
     */
    public function convertToPHPValue(
        $value, AbstractPlatform $platform
    ) {
        return new Body($value);
    }

    /**
     * @param Body $value
     */
    public function convertToDatabaseValue(
        $value, AbstractPlatform $platform
    ) {
        return $value->content();



Repositories

[ 274 ]

    }

    public function getName()
    {
        return 'body';
    }
}

namespace Infrastructure\Persistence\Doctrine\Types;

use Doctrine\DBAL\Types\Type;
use Doctrine\DBAL\Platforms\AbstractPlatform;
use Domain\Model\PostId;

class PostIdType extends Type
{
    public function getSQLDeclaration(
        array $fieldDeclaration, AbstractPlatform $platform
    ) {
        return $platform->getGuidTypeDeclarationSQL(
            $fieldDeclaration
        );
    }

    /**
     * @param string $value
     * @return PostId
     */
    public function convertToPHPValue(
        $value, AbstractPlatform $platform
    ) {
        return new PostId($value);
    }

    /**
     * @param PostId $value
     */
    public function convertToDatabaseValue(
        $value, AbstractPlatform $platform
    ) {
       return $value->id();
    }

    public function getName()
    {
       return 'post_id';
    }
}



Repositories

[ 275 ]

Don't forget to implement the __toString magic method on the PostId Value Object, as
Doctrine requires this:

class PostId
{
    // ...
    public function __toString()
    {
        return $this->id;
    }
}

Doctrine offers multiple formats for the mapping, such as YAML, XML, or annotations.
XML is our preferred choice, as it provides robust IDE autocompletion:

<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mapping
    xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://doctrine-project.org/schemas/orm/doctrine-mapping
    http://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

    <entity name="Domain\Model\Post" table="posts">
        <id name="id" type="post_id" column="id">
            <generator strategy="NONE" />
        </id>
        <field name="body" type="body" length="250" column="body"/>
        <field name="createdAt" type="datetime" column="created_at"/>
    </entity>

</doctrine-mapping>

 Exercise  
Write down what the mapping would look like in the case of using the
Doctrine Embeddables approach. Take a look at Chapter Value Objects or
Chapter Entities if you need some help.



Repositories

[ 276 ]

Entity Manager
The EntityManager is the central access point for the ORM functionality. Bootstrapping it
is easy:

use Doctrine\DBAL\Types\Type;
use Doctrine\ORM\EntityManager;
use Doctrine\ORM\Tools;

Type::addType(
    'post_id',
    'Infrastructure\Persistence\Doctrine\Types\PostIdType'
);

Type::addType(
    'body',
    'Infrastructure\Persistence\Doctrine\Types\BodyType'
);

$entityManager = EntityManager::create(
    [
        'driver' => 'pdo_sqlite',
        'path'=> __DIR__ . '/db.sqlite',
    ],
    Tools\Setup::createXMLMetadataConfiguration(
         ['/Path/To/Infrastructure/Persistence/Doctrine/Mapping'],
         $devMode = true
    )
);

Remember to configure it according to your needs and setup.

DQL Implementation
In the case of this Repository, we'll only need the EntityManager to retrieve Domain
objects directly from the database:

namespace Infrastructure\Persistence\Doctrine;

use Doctrine\ORM\EntityManager;
use Domain\Model\Post;
use Domain\Model\PostId;
use Domain\Model\PostRepository;

class DoctrinePostRepository implements PostRepository
{



Repositories

[ 277 ]

    protected $em;

    public function __construct(EntityManager $em)
    {
        $this->em = $em;
    }
    public function add(Post $aPost)
    {
        $this->em->persist($aPost);
    }

    public function remove(Post $aPost)
    {
        $this->em->remove($aPost);
    }

    public function postOfId(PostId $anId)
    {
        return $this->em->find('Domain\Model\Post', $anId);
    }

    public function latestPosts(\DateTimeImmutable $sinceADate)
    {
       return $this->em->createQueryBuilder()
           ->select('p')
           ->from('Domain\Model\Post', 'p')
           ->where('p.createdAt > :since')
           ->setParameter(':since', $sinceADate)
           ->getQuery()
           ->getResult();
    }

    public function nextIdentity()
    {
        return new PostId();
    }
}

If you check some Doctrine examples out there, you may find that after running persist or
remove, flush should be called. But as seen in our proposal, there's no call to flush.
Flushing and dealing with transactions is delegated to the Application Service. That's why
you can work with Doctrine, considering that flushing all the changes on Entities will
happen at the end of the request. In terms of performance, one flush call is best.



Repositories

[ 278 ]

Persistence-Oriented Repository
There are times when collection-oriented Repositories don't fit well with our persistence
mechanism. If you don't have a unit of work, keeping track of Aggregate changes is a
difficult task. The only way to persist such changes is by explicitly calling save.

The interface definition for a persistence-oriented Repository is similar to how you would
define a collection-oriented equivalent:

 interface PostRepository
 {
     public function nextIdentity();
     public function postOfId(PostId $anId);
     public function save(Post $aPost);
     public function saveAll(array $posts);
     public function remove(Post $aPost);
     public function removeAll(array $posts);
 }

In this case, we now have save and saveAll methods, which provide functionality similar
to the previous add and addAll methods. However, the important difference is how the
client uses them. Within a collection-oriented style, you use the add methods just once:
when the Aggregate is created. In a persistence-oriented style, you'll not only use the save
action after creating a new Aggregate, but also when an existing one is modified:

 $post = new Post(/* ... */);
 $postRepository->save($post);

 // later ...
 $post = $postRepository->postOfId($postId);
 $post->editBody(new Body('New body!'));
 $postRepository->save($post);

Other than this difference, the details are only in the implementation.

Redis Implementation
The Redis is an in-memory key value that can be used as a cache or store.

Depending on the circumstances, we could consider using Redis as a store for our
Aggregates.

http://redis.io/


Repositories

[ 279 ]

To get started, make sure you have a PHP client to connect to Redis. A good one that we
recommend is Predis:

composer require predis/predis:~1.0
namespace Infrastructure\Persistence\Redis;

use Domain\Model\Post;
use Domain\Model\PostId;
use Domain\Model\PostRepository;
use Predis\Client;

class RedisPostRepository implements PostRepository
{
    private $client;

    public function __construct(Client $client)
    {
        $this->client = $client;
    }

    public function save(Post $aPost)
    {
        $this->client->hset(
            'posts',
            (string) $aPost->id(), serialize($aPost)
        );
    }

    public function remove(Post $aPost)
    {
        $this->client->hdel('posts', (string) $aPost->id());
    }

    public function postOfId(PostId $anId)
    {
       if($data = $this->client->hget('posts', (string) $anId)) {
          return unserialize($data);
       }

       return null;
    }

    public function latestPosts(\DateTimeImmutable $sinceADate)
    {
        $latest = $this->filterPosts(
            function(Post $post) use ($sinceADate) {
                return $post->createdAt() > $sinceADate;
            }

https://github.com/nrk/predis


Repositories

[ 280 ]

        );

        $this->sortByCreatedAt($latest);

        return array_values($latest);
    }

    private function filterPosts(callable $fn)
    {
        return array_filter(array_map(function ($data) {
            return unserialize($data);
        },

        $this->client->hgetall('posts')), $fn);
    }

    private function sortByCreatedAt(&$posts)
    {
        usort($posts, function (Post $a, Post $b) {
            if ($a->createdAt() == $b->createdAt()) {
                return 0;
            }
            return ($a->createdAt() < $b->createdAt()) ? -1 : 1;
        });
    }

    public function nextIdentity()
    {
        return new PostId();
    }
 }

SQL Implementation
In a classic example, we could create a simple PDO implementation for our
PostRepository just by using plain SQL queries:

namespace Infrastructure\Persistence\Sql;

use Domain\Model\Body;
use Domain\Model\Post;
use Domain\Model\PostId;
use Domain\Model\PostRepository;

class SqlPostRepository implements PostRepository
{

http://php.net/manual/en/book.pdo.php


Repositories

[ 281 ]

    const DATE_FORMAT = 'Y-m-d H:i:s';

    private $pdo;

    public function __construct(\PDO $pdo)
    {
        $this->pdo = $pdo;
    }

    public function save(Post $aPost)
    {
        $sql ='INSERT INTO posts ' .
            '(id, body, created_at) VALUES ' .
            '(:id, :body, :created_at)';

        $this->execute($sql, [
            'id' => $aPost->id()->id(),
            'body' => $aPost->body()->content(),
            'created_at' => $aPost->createdAt()->format(
                self::DATE_FORMAT
            )
        ]);
    }

    private function execute($sql, array $parameters)
    {
        $st = $this->pdo->prepare($sql);

        $st->execute($parameters);

        return $st;
    }

    public function remove(Post $aPost)
    {
        $this->execute('DELETE FROM posts WHERE id = :id', [
            'id' => $aPost->id()->id()
        ]);
    }

    public function postOfId(PostId $anId)
    {
        $st =$this->execute('SELECT * FROM posts WHERE id = :id',[
            'id' => $anId->id()
        ]);

        if($row = $st->fetch(\PDO::FETCH_ASSOC)) {
            return $this->buildPost($row);



Repositories

[ 282 ]

        }

        return null;
    }

    private function buildPost($row)
    {
        return new Post(
            new PostId($row['id']),
            new Body($row['body']),
            new \DateTimeImmutable($row['created_at'])
        );
    }

    public function latestPosts(\DateTimeImmutable $sinceADate)
    {
        return $this->retrieveAll(
            'SELECT * FROM posts WHERE created_at > :since_date', [
                'since_date' => $sinceADate->format(self::DATE_FORMAT)
            ]
        );
    }

    private function retrieveAll($sql, array $parameters = [])
    {
        $st = $this->pdo->prepare($sql);

        $st->execute($parameters);

        return array_map(function ($row) {
            return $this->buildPost($row);
        }, $st->fetchAll(\PDO::FETCH_ASSOC));
    }

    public function nextIdentity()
    {
        return new PostId();
    }

    public function size()
    {
        return $this->pdo->query('SELECT COUNT(*) FROM posts')
            ->fetchColumn();
    }
}



Repositories

[ 283 ]

As we don't have any mapping configuration, it would be very useful to have an
initialization method for the schema within the same class. Things that change together
should remain together:

class SqlPostRepository implements PostRepository
{
    // ...
    public function initSchema()
    {
        $this->pdo->exec(<<<SQL
DROP TABLE IF EXISTS posts;

CREATE TABLE posts (
    id CHAR(36) PRIMARY KEY,
    body VARCHAR (250) NOT NULL,
    created_at DATETIME NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
        SQL);
    }
}

Extra Behavior
interface PostRepository
{
    // ...
    public function size();
}

The implementation could look like this:

class DoctrinePostRepository implements PostRepository
{
    // ...

    public function size()
    {
        return $this->em->createQueryBuilder()
            ->select('count(p.id)')
            ->from('Domain\Model\Post', 'p')
            ->getQuery()
            ->getSingleScalarResult();
    }
}



Repositories

[ 284 ]

Adding additional behavior to a Repository can be very beneficial. An example of this is the
ability to count all the items in a given collection. You might think to add a method with the
name count; however, as we're trying to mimic a collection, a better name would instead be
size:

You're also able to place specific calculations, counters, read-optimized queries, or complex
commands (INSERT, UPDATE, or DELETE) into the Repository. However, all behavior should
still follow the Repositories' collection characteristics. You're encouraged to move as much
logic into Domain-specific stateless Domain Services as possible, instead of simply adding
these responsibilities to the Repository.

In some instances, you won't require the entire Aggregate for simply accessing small
amounts of information. To solve this, you can add Repository methods to access these as
shortcuts. You should make sure to only access data that could be retrieved by navigating
through the Aggregate Root. As such, you shouldn't allow access to the private and internal
areas of the Aggregate Root, as this would violate the laid out contractual agreement.

For some use cases, you'll require very specific queries that are compositions of multiple
Aggregate types, each returning specific information. These queries can be run and then
returned as a single Value Object. It's very common for Repositories to return Value Objects.

If you find yourself creating many use case optimal finder methods, you may be
introducing a common code smell. This could be an indication of a misjudged Aggregate
boundary. If, however, you're confident that the boundaries are correct, it could be time to
explore CQRS.

Querying Repositories
Upon comparison, Repositories are different than a collection if we consider their querying
ability. A Repository deals with a large set of objects that typically aren't in memory when
the query is performed. It's not feasible to load all the instances of a Domain object in
memory and perform a query over them.

A good solution is to pass a criterion and let the Repository handle the implementation
details to successfully perform the operation. It might translate the criterion to SQL or ORM
queries or iterate over an in-memory collection. However, it doesn't matter, because the
implementation deals with it.



Repositories

[ 285 ]

Specification Pattern
A common implementation for the criterion object is the Specification pattern. A
specification is a simple predicate that takes a Domain object and returns a boolean. Given a
Domain object, it will return true if it specifies the specification, and false otherwise:

interface PostSpecification
{
    /**
     * @return boolean
     */
    public function specifies(Post $aPost);
}

We just need to add a query method to our Repository:

interface PostRepository
{
    // ...
    public function query($specification);
}

In-Memory Implementation
As an example, if we wanted to replicate the latestPosts query method in our
PostRepository by using a Specification for an in-memory implementation, it would look
like this:

namespace Infrastructure\Persistence\InMemory;

use Domain\Model\Post;

interface InMemoryPostSpecification
{
    /**
     * @return boolean
     */
     public function specifies(Post $aPost);
}



Repositories

[ 286 ]

The in-memory implementation for the latestPosts behavior could look like this:

namespace Infrastructure\Persistence\InMemory;
use Domain\Model\Post;

class InMemoryLatestPostSpecification
    implements InMemoryPostSpecification
{
    private $since;

    public function __construct(\DateTimeImmutable $since)
    {
       $this->since = $since;
    }

    public function specifies(Post $aPost)
    {
      return $aPost->createdAt() > $this->since;
    }
}

The query method for our Repository implementation could look like this:

class InMemoryPostRepository implements PostRepository
{
    // ...

    /**
     * @param InMemoryPostSpecification $specification
     *
     * @return Post[]
     */
    public function query($specification)
    {
        return $this->filterPosts(
            function (Post $post) use($specification) {
                return $specification->specifies($post);
            }
        );
    }
}

Retrieving all the latest posts from the Repository is as simple as creating a tailored instance
of the above implementation:

$latestPosts = $postRepository->query(
    new InMemoryLatestPostSpecification(new \DateTimeImmutable('-24'))
);



Repositories

[ 287 ]

SQL Implementation
A standard specification works well for in-memory implementations. However, as we don't
pre-load all the Domain objects in memory for an SQL implementation, we need a more
specific specification for these cases:

namespace Infrastructure\Persistence\Sql;

interface SqlPostSpecification
{
    /**
     * @return string
     */
    public function toSqlClauses();
}

The SQL implementation for this specification could look like this:

namespace Infrastructure\Persistence\Sql;

class SqlLatestPostSpecification implements SqlPostSpecification
{
    private $since;

    public function __construct(\DateTimeImmutable $since)
    {
        $this->since = $since;
    }

    public function toSqlClauses()
    {
        return "created_at >'" .
            $this->since->format('Y-m-d H:i:s') .
            "'";
    }
}

And here's an example of how to query an SQLPostRepository implementation:

class SqlPostRepository implements PostRepository
{
    // ...

    /**
     * @param SqlPostSpecification $specification
     *
     * @return Post[]
     */



Repositories

[ 288 ]

    public function query($specification)
    {
        return $this->retrieveAll(
            'SELECT * FROM posts WHERE ' .
                $specification->toSqlClauses()
        );
    }

    private function retrieveAll($sql, array $parameters = [])
    {
        $st = $this->pdo->prepare($sql);

        $st->execute($parameters);

        return array_map(function ($row) {
            return $this->buildPost($row);
        }, $st->fetchAll(\PDO::FETCH_ASSOC));
    }
}

Managing Transactions
The Domain Model isn't the place to manage transactions. The operations applied over the
Domain Model should be agnostic to the persistence mechanism. A common approach to
solving this problem is placing a Facade in the Application layer, thereby grouping related
use cases together. When a method of the Facade is invoked from the UI layer, the business
method begins a transaction. Once complete, the Facade ends the interaction by committing
the transaction. If anything goes wrong, the transaction is rolled back:

use Doctrine\ORM\EntityManager;

class SomeApplicationServiceFacade
{
    private $em;

    public function __construct(EntityManager $em)
    {
        $this->em = $em;
    }

    public function doSomeUseCaseTask()
    {
        try {
            $this->em->getConnection()->beginTransaction();
            // Use domain model

http://en.wikipedia.org/wiki/Facade_pattern


Repositories

[ 289 ]

            $this->em->getConnection()->commit();
        } catch (Exception $e) {
             $this->em->getConnection()->rollback();
             throw $e;
        }
    }
}

The problem introduced with Facades is that we have to repeat the same boilerplate code
over and over. If we unify the way we execute use cases, we could wrap them in a
transaction using the Decorator pattern:

interface ApplicationService
{
   /**
    * @param $request
    * @return mixed
    */
    public function execute(BaseRequest $request);
}

class SomeApplicationService implements ApplicationService
{
    public function execute(BaseRequest $request)
    {
       // do something
    }
}

We don't want to couple our Application layer with the concrete transactional procedure, so
instead we can create a simple interface for it:

interface TransactionalSession
{
    /**
     * @param callable $operation
     * @return mixed
     */
    public function executeAtomically(callable $operation);
}

http://en.wikipedia.org/wiki/Decorator_pattern


Repositories

[ 290 ]

A Decorator's pattern implementation that can make any Application Service transactional
is as easy as this:

class TransactionalApplicationService implements ApplicationService
{
    private $session;
    private $service;

    public function __construct(
        ApplicationService $service,
        TransactionalSession $session
    ) {
        $this->session = $session;
        $this->service = $service;
    }

    public function execute(BaseRequest $request)
    {
        $operation = function() use($request) {
            return $this->service->execute($request);
        };

        return $this->session->executeAtomically(
            $operation->bindTo($this)
        );
    }
}

Following this, we could alternatively create a Doctrine transactional session
implementation:

class DoctrineSession implements TransactionalSession
{
    private $entityManager;

    public function __construct(EntityManager $entityManager)
    {
        $this->entityManager = $entityManager;
    }

    public function executeAtomically(callable $operation)
    {
        return $this->entityManager->transactional($operation);
    }
}



Repositories

[ 291 ]

Now we have everything to execute our use cases within a transaction:

$useCase = new TransactionalApplicationService(
    new SomeApplicationService(
        // ...
    ),
    new DoctrineSession(
       // ...
    )
);

$response = $useCase->execute();

Testing Repositories
In order to be sure that the Repository will work in production, we'll need to test its
implementation. To do this, we have to test the boundaries of the system, making sure that
our expectations are correct.

In the case of a Doctrine test, the setup will be a little bit more sophisticated:

use Doctrine\DBAL\Types\Type;
use Doctrine\ORM\EntityManager;
use Doctrine\ORM\Tools;
use Domain\Model\Post;

class DoctrinePostRepositoryTest extends \PHPUnit_Framework_TestCase
{
    private $postRepository;

    public function setUp()
    {
        $this->postRepository = $this->createPostRepository();
    }

    private function createPostRepository()
    {
        $this->addCustomTypes();
        $em = $this->initEntityManager();
        $this->initSchema($em);

        return new PrecociousDoctrinePostRepository($em);
    }

    private function addCustomTypes()
    {



Repositories

[ 292 ]

        if (!Type::hasType('post_id')) {
            Type::addType(
                'post_id',
                'Infrastructure\Persistence\Doctrine\Types\PostIdType'
            );
        }

        if (!Type::hasType('body')) {
            Type::addType(
                'body',
                'Infrastructure\Persistence\Doctrine\Types\BodyType'
            );
        }
    }

    protected function initEntityManager()
    {
        return EntityManager::create(
            ['url' => 'sqlite:///:memory:'],
            Tools\Setup::createXMLMetadataConfiguration(
                ['/Path/To/Infrastructure/Persistence/Doctrine/Mapping'],
                $devMode = true
            )
        );
    }

    private function initSchema(EntityManager $em)
    {
        $tool = new Tools\SchemaTool($em);
        $tool->createSchema([
            $em->getClassMetadata('Domain\Model\Post')
        ]);
    }

    // ...
}

class PrecociousDoctrinePostRepository extends DoctrinePostRepository
{
    public function persist(Post $aPost)
    {
        parent::persist($aPost);

        $this->em->flush();
    }

    public function remove(Post $aPost)
    {



Repositories

[ 293 ]

        parent::remove($aPost);

        $this->em->flush();
    }
}

Once we have this environment set up, we can continue to test the Repository's behavior:

class DoctrinePostRepositoryTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function itShouldRemovePost()
    {
        $post = $this->persistPost('irrelevant body');

        $this->postRepository->remove($post);

        $this->assertPostExist($post->id());
    }

    private function assertPostExist($id)
    {
        $result = $this->postRepository->postOfId($id);
        $this->assertNull($result);
    }

    private function persistPost(
        $body,
        \DateTimeImmutable $createdAt = null
    ) {
        $this->postRepository->add(
            $post = new Post(
                $this->postRepository->nextIdentity(),
                new Body($body),
                $createdAt
            )
        );

        return $post;
    }
}



Repositories

[ 294 ]

Following our earlier assertion, if we save a Post, we expect to find it in the exact same
state.

Now we can move on to test finding the latest posts by specifying a given date:

class DoctrinePostRepositoryTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function itShouldFetchLatestPosts()
    {
        $this->persistPost(
            'a year ago', new \DateTimeImmutable('-1 year')
        );
        $this->persistPost(
            'a month ago', new \DateTimeImmutable('-1 month')
        );
        $this->persistPost(
            'few hours ago', new \DateTimeImmutable('-3 hours')
        );
        $this->persistPost(
            'few minutes ago', new \DateTimeImmutable('-2 minutes')
        );

        $posts = $this->postRepository->latestPosts(
            new \DateTimeImmutable('-24 hours')
        );

        $this->assertCount(2, $posts);
        $this->assertEquals(
            'few hours ago', $posts[0]->body()->content()
        );
        $this->assertEquals(
            'few minutes ago', $posts[1]->body()->content()
        );
    }
}



Repositories

[ 295 ]

Testing Your Services with In-Memory
Implementations
Setting up a fully persistent Repository implementation can be complex and result in slow
execution. You should care about keeping your tests fast. Going through the whole
database setup and then querying will slow you down enormously. Having an in-memory
implementation could help delay persistence decisions until the end. We can test in the
same manner as we did before, but this time, we'll use a full-featured fast and simple in-
memory implementation:

class MyServiceTest extends \PHPUnit_Framework_TestCase
{
    private $service;

    public function setUp()
    {
        $this->service = new MyService(
            new InMemoryPostRepository()
        );
    }
}

Wrap-Up
A Repository is a mechanism that acts as a storage location. The difference between a DAO
and a Repository is that a DAO follows a database-first approach, decreasing cohesion with
many low-level methods to query the database. Depending on the underlying persistence
mechanics, we've seen different Repository approaches:

Collection-oriented Repositories tend to be purer to the Domain model, even if
they persist Entities. From the client's point of view, a collection-oriented
Repository looks like a collection (Set). There's no need for explicit persistence
calls on Entity updates, as the Repository tracks changes on the objects. We
explored how to use Doctrine as the underlying persistence mechanism for this
type of Repository.
Persistence-oriented Repositories require explicit persistence calls, as they don't
track object changes. We explored Redis and plain SQL implementations.

Along the way, we discovered Specifications as a pattern that helps us query the database
without sacrificing flexibility and cohesion. We also studied how to manage transactions
and how to test our services with simple and fast in-memory Repository implementations.



11
Application

The Application layer is the area that separates the Domain Model from the clients that
query or change its state. Application Services are the building blocks for such a layer. As
Vaughn Vernon says: "Application Services are the direct clients of the domain model." You
could think about an Application Service as a point of contact between the outside world
(HTML forms, API clients, the command line, frameworks, UI, and so on.) and the Domain
Model itself. It might help by thinking about the top-level use cases that your system
exposes to the world, example: "as guest, I want to register," "as a logged user, I want to
purchase a product," and so on.

In this chapter, we'll explore how to implement Application Services, understand the role of
the Command pattern, and establish the responsibilities of an Application Service. To do
this, let's consider the use case of signing up a new user.

Conceptually, in order to register a new user, we need to:

Get an email and password from the client
Check if the email is already in use
Create a new user
Add this new user to the existing user set
Return the user we've just created

Let's go for it.

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577


Application

[ 297 ]

Requests
We need to send the email and password to the Application Service. There are many ways
of doing such a thing from the client (HTML form, API client, or even the command line).
We could just send standard parameters (email and password) through the method
signature or build and send a data structure with this information. The latter approach,
sending a DTO, brings some interesting features to the table. By sending an object, it'll be
possible to serialize and queue it over a Command Bus. It'll also be possible to add type
safety and some IDE help, too.

Data Transfer Object
A DTO is a data structure that carries information between processes.
Don't mistake it for a full-featured object. A DTO doesn't have any
behavior except for storage and retrieval of its own data (accessors and
mutators). DTOs are simple objects that shouldn't contain any business
logic that would require testing.

As Vaughn Vernon says:

Application Service method signatures use only primitive types (int, strings, and so
on.), and possibly DTOs. As an alternative to these approaches, however, a better
approach may be to design Command objects instead. There is not necessarily a right
or wrong way. It mostly depends on your tastes and goals.

The implementation for a DTO that holds the data required for the Application Service
could be something like this:

namespace Lw\Application\Service\User;

class SignUpUserRequest
{
    private $email;
    private $password;

    public function __construct($email, $password)
    {
        $this->email = $email;
        $this->password = $password;
    }

    public function email()
    {
        return $this->email;
    }

http://martinfowler.com/eaaCatalog/dataTransferObject.html
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577


Application

[ 298 ]

    public function password()
    {
        return $this->password;
    }
}

As you see, SignUpUserRequest has no behavior, only data. This could have come from
an HTML form or an API endpoint, though we don't care which.

Building Application Service Requests
Creating a request from the delivery mechanism, your favorite framework, should be pretty
straightforward. On the web, you could pick up parameters from the controller request and
pass them down to the Service inside a DTO. The same principle applies for a CLI
command: read input parameters and send them down again.

With Symfony, we can extract the data we need from Request object from the
HttpFoundation component:

// ...
class UsersController extends Controller
{
    /**
     * @Route('/signup', name = 'signup')
     * @param Request $request
     * @return Response
     */
    public function signUpAction(Request $request)
    {
        // ...
        $signUpUserRequest = new SignUpUserRequest(
            $request->get('email'),
            $request->get('password')
        );
        // ...
    }
// ...



Application

[ 299 ]

On a more elaborate Silex application that uses the Form component to capture and validate
parameters, it would look like this:

// ...
$app->match('/signup', function (Request $request) use ($app) {
    $form = $app['sign_up_form'];
    $form->handleRequest($request);

    if ($form->isValid()) {
        $data = $form->getData();

        try {
            $app['sign_in_user_application_service']->execute(
                new SignUpUserRequest(
                     $data['email'],
                     $data['password']
                )
            );

            return $app->redirect(
                $app['url_generator']->generate('login')
            );
        } catch (UserAlreadyExistsException $e) {
            $form
                ->get('email')
                ->addError(
                    new FormError(
                        'Email is already registered by another user'
                    )
                );
        } catch (Exception $e) {
            $form
                ->addError(
                    new FormError(
                      'There was an error, please get in touch with us'
                    )
                );
        }
    }

    return $app['twig']->render('signup.html.twig', [
        'form' => $form->createView(),
    ]);
});



Application

[ 300 ]

Request Design
When designing your request objects, you should always follow these principles: use
primitives, design for serialization, and don't include business logic inside. This way, you'll
be able to save unit testing dollars.

Use Primitives
We recommend using basic types to build up your request objects — that means strings,
integers, booleans, and so on. We're just abstracting away input parameters. You should be
able to consume Application Services independently from the delivery mechanism. Even
pretty complicated HTML forms get translated into basic types all the time at the controller
level. You don't want to mix up your framework and your business logic.

With certain scenarios, it's tempting to use Value Objects directly. Don't do it. Updates on
the Value Object definition will affect all clients, and you'll be coupling clients with your
Domain logic.

Serializable
A cool side effect of using basic types is that any request object can easily be serialized into
a string, sent through the wire, and stored in a messaging system or database.

No Business Logic
Avoid putting any business logic — even validation — inside your request objects.
Validation should take place inside your Domain — this is inside your Entities, Value
Objects, Domain Services, etc. Validation is a way of enforcing business invariants and
Domain constraints.

No Tests
Application requests are data structures, not objects. Unit testing data structures is like
testing getters and setters. There's no behavior to test, so there isn't much value in trying to 
unit test request objects and DTOs. These structures will be covered as a side effect of more
elaborate tests, such as Integration or Acceptance tests.



Application

[ 301 ]

Commands are an alternative to request objects. We could design a Service with multiple
Application methods, and each one of them with the parameters you'd put inside the
Request. This is OK for simple applications, but we'll worry about this topic later.

Anatomy of an Application Service
Once we have the data encapsulated in a request, it's time for the business logic. As Vaughn
Vernon says: "Keep Application Services thin, using them only to coordinate tasks on the
model."

The first thing to do is to extract the necessary information from the request, That is, the
email and password. At a high level, we need to check if there's an existing user with a
particular email. If this isn't the case, then we create and add the user to the
UserRepository. In the special case of finding a user with the same email, we raise an
exception so the client can treat it their own way — by displaying an error, retrying, or just
ignoring it:

namespace Lw\Application\Service\User;

use Ddd\Application\Service\ApplicationService;
use Lw\Domain\Model\User\User;
use Lw\Domain\Model\User\UserAlreadyExistsException;
use Lw\Domain\Model\User\UserRepository;

class SignUpUserService
{
    private $userRepository;

    public function __construct(UserRepository $userRepository)
    {
        $this->userRepository = $userRepository;
    }

    public function execute(SignUpUserRequest $request)
    {
        $email = $request->email();
        $password = $request->password();

        $user = $this->userRepository->ofEmail($email);
        if ($user) {
            throw new UserAlreadyExistsException();
        }

        $this->userRepository->add(

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577


Application

[ 302 ]

            new User(
                $this->userRepository->nextIdentity(),
                $email ,
                $password
            )
        );
    }
}

Nice! If you're wondering what this UserRepository thing is doing in the constructor,
we'll show you that next.

Handling Exceptions
Exceptions raised by Application Services are a way of communicating
unusual cases and flows to the client. Exceptions on this layer are related
to business logic (like not finding a user), and not implementation details
(like PDOException, PredisException, or DoctrineException).

Dependency Inversion
Handling users is not the responsibility of the Service. As we saw in Chapter
10, Repositories, there's a specialized class that deals with User collections: the User
Repository. This is a dependency from the Application Service to the Repository. We don't
want to couple the Application Service with a concrete implementation of the Repository, as
then we'd be coupling our Service with Infrastructure details. So we depend on the contract
(interface) that concrete implementations depend on, the UserRepository.

A specific implementation of the UserRepository will be built and passed in at runtime —
for example, with DoctrineUserRepository, a specific implementation that uses
Doctrine. Passing a specific implementation will also work when testing. For example,
NotAvailableUserRepository can be a specific implementation that will throw
exceptions each time an operation is performed. This way, we can test all Application
Service behaviors, including sad paths, which is when the application must behave
properly, even if something goes wrong.

Application Services could depend on Domain Services like GetBadgesByUser too. At
runtime, the implementation for such a Service could be quite elaborate. Imagine an
HttpGetBadgesByUser for integrating a Bounded Context through HTTP protocol.

Depending on abstractions, we'll make our Application Service immune to low-level
Infrastructure changes.



Application

[ 303 ]

Instantiating Application Services
Instantiating just your Application Service is easy, but building the dependency tree might
be tricky, depending on how complicated the dependencies are to build. For such a
purpose, most frameworks come with a Dependency Injection Container. Without one,
you'll end up with something like the following code somewhere in your controller:

$redisClient = new Predis\Client([
    'scheme' => 'tcp',
    'host' => '10.0.0.1',
    'port' => 6379
]);

$userRepository = new RedisUserRepository($redisClient);
$signUp = new SignUpUserService($userRepository);
$signUp->execute(new SignUpUserRequest(
    'user@example.com',
    'password'
));

We decided to use the Redis implementation for the UserRepository. In the previous
code example, we built all dependencies needed for building a Repository that uses Redis
internally. Those dependencies are: a Predis client, and all parameters to connect to our
Redis server. This is not only inefficient, but it also spreads duplication across controllers.

You could refactor the construction logic into a Factory, or you could use a Dependency
Injection Container — most modern frameworks come with it.

Is It Bad to Use a Dependency Injection Container?
Not at all. Dependency Injection Containers are just a tool. They help by
abstracting away the complexities of building your dependencies. They
come in handy for building Infrastructure artifacts. Symfony offers a
complete solution.

Take into account the fact that passing the entire container as a whole to
one of the Services is a bad practice. That would be like coupling the entire
context of your application with the Domain. If a Service needs specific
objects, build them from your framework and pass them as dependencies
into the Service, but don't make that Service aware of the entire context.

http://redis.io/
https://github.com/nrk/predis


Application

[ 304 ]

Let's see how would we build dependencies in Silex:

$app = new \Silex\Application();
$app['redis_parameters'] = [
     'scheme' => 'tcp',
     'host' => '127.0.0.1',
     'port' => 6379
];

$app['redis'] = $app->share(function ($app) {
    return new Predis\Client($app['redis_parameters']);
});

$app['user_repository'] = $app->share(function($app) {
    return new RedisUserRepository(
        $app['redis']
    );
});

$app['sign_up_user_application_service'] = $app->share(function($app) {
    return new SignUpUserService(
        $app['user_repository']
    );
});

// ...

$app->match('/signup' ,function (Request $request) use ($app) {
    // ...
    $app['sign_up_user_application_service']->execute(
        new SignUpUserRequest(
            $request->get('email'),
            $request->get('password')
        )
    );
    // ...
});

As you can see, $app is used as the Service Container. We register all the components
needed, along with their dependencies. sign_up_user_application_service depends
on the definitions made above. Changing the implementation for the user_repository is
as easy as returning something else (MySQL, MongoDB, and so on.), so we don't need to
change the Service code at all.



Application

[ 305 ]

The equivalent for a Symfony application looks like this:

<?xml version=" 1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://symfony.com/schema/dic/services
        http://symfony.com/schema/dic/services/services-1.0.xsd">
    <services>
        <service
            id="sign_up_user_application_service"
            class="SignUpUserService">
            <argument type="service" id="user_repository" />
        </service>

        <service
            id="user_repository"
            class="RedisUserRepository">
            <argument type="service">
                <service class="Predis\Client" />
            </argument>
        </service>
    </services>
</container>

Now that you have the definition of your Application Service in the Symfony Service
Container, getting it later is pretty straightforward. All delivery mechanisms — Web
Controllers, REST Controllers, and even Console Commands — share the same definition.
The Service is available on any class implementing the ContainerAware interface. Getting
the Service is as easy as calling $this->get('sign_up_user_application_service'.

To summarize, how you build your Services (adhoc, using Service Containers, using
Factories, and so on.) doesn't matter. However, it's important to keep your Application
Services setup out of the Infrastructure boundary.

Customize an Application Service
The main way to customize your Application Service is by choosing which dependencies
you're passing in. Depending on your Service Container capabilities, that could be a bit
tricky, so you can also add a setter to change the dependency on the fly. For example, you
may need to change an output dependency so that you can set up a default one and then
change it afterward. If logic gets too complicated, you can create an Application Service
Factory that will handle this situation for you.



Application

[ 306 ]

Execution
There are two different approaches for invoking Application Services: a dedicated class per
use case with a single execution method, and multiple Application Services and use cases
inside the same class.

One Class Per Application Service
This is our preferred approach, and probably the one that fits all scenarios:

class SignUpUserService
{
    // ...
    public function execute(SignUpUserRequest $request)
    {
       // ...
    }
}

Using a dedicated class per Application Service makes the code more robust against
external changes (Single Responsibility Principle). There are fewer reasons to change the
class, as the Service does one and only one thing. The Application Service will be easier to
test, seeing as it does less things. It's easier to implement a common Application Service
contract, making class decoration easier (check out Sub section Transactions of Chapter 10,
 Repositories ). This will also result in higher cohesion, as all dependencies are exclusively
dedicated to a single use case.

The execution method could have a more expressive name, like signUp. However, the
execute Command pattern format standardizes a common contract across Application
Services, thereby enabling easy decoration, which comes in handy for transactions.

Multiple Application Service Methods per Class
Sometimes it might be a good idea to group cohesive Application Services under the same
class:

class UserService
{
    // ...
    public function signUp(SignUpUserRequest $request)
    {
        // ...
    }

http://martinfowler.com/bliki/DecoratedCommand.html


Application

[ 307 ]

    public function signIn(SignUpUserRequest $request)
    {
        // ...
    }

    public function logOut(LogOutUserRequest $request)
    {
        // ...
    }
}

We don't recommend such an approach, as not all Application Services are 100 percent
cohesive. Some Services will require different dependencies, and you'll end up with
Application Services depending on things they don't need. Another issue is that this kind of
class grows fast. As it violates the Single Responsibility Principle, there will be multiple
reasons to change and maybe even break it.

Returning Values
After signing up, we might be thinking about redirecting the user to a profile page. The
natural way of passing the required information back to the controller is to return the User
Entity directly from the Service:

class SignUpUserService
{
    // ...

    public function execute(SignUpUserRequest $request)
    {
        $user = new User(
            $this->userRepository->nextIdentity(),
            $email,
            $password
        );

        $this->userRepository->add($user);

        return $user;
    }
}

Then, from the controller, we would pick up the id field and redirect to some other place.
However, think twice about what we've just done. We returned a full-featured Entity to the
controller, which will allow the delivery mechanism to bypass the Application Layer and
interact directly with the Domain.



Application

[ 308 ]

Imagine the User Entity offers an updateEmailAddress method. You could try to prevent
it, but at some point in the future, somebody might think about using it:

$app-> match( '/signup' , function (Request $request) use ($app) {
   // ...
   $user = $app['sign_up_user_application_service']->execute(
       new SignUpUserRequest(
           $request->get('email'),
           $request->get('password'))
   );
   $user->updateEmailAddress('shouldnotupdate@email.com');
   // ...
});

Not only that, but the data that the presentation layer needs is not the same that the Domain
manages. We don't want to evolve and couple the Domain layer around the presentation
layer. Instead, we want them to evolve freely.

To do this, we need a flexible way of decoupling both layers.

DTO from Aggregate Instances
We could return sterile data structures with the information the presentation layer needs.
As we've seen before, DTOs fit with this scenario. We just need to compose them in the
Application Service and return them to the client:

class UserDTO
{
    private $email ;
    // ...

    public function __construct(User $user)
    {
        $this->email = $user->email ();
        // ...
    }

    public function email ()
    {
        return $this->email ;
    }
}



Application

[ 309 ]

The UserDTO will expose whatever read-only data we need from the User Entity on the
presentation layer, thereby avoiding exposing behavior:

class SignUpUserService
{
    public function execute(SignUpUserRequest $request)
    {
        // ...

        $user = // ...

        return new UserDTO($user);
    }
}

Mission accomplished. Now we could pass parameters to the template engine and
transform them into widgets, tags, or subtemplates, or do whatever we want with the data
on the presentation side:

$app->match('/signup' , function (Request $request) use ($app) {
    /**
     * @var UserDTO $user
     */
    $userDto=$app['sign_up_user_application_service']->execute(
        new SignUpUserRequest(
            $request->get('email'),
            $request->get('password')
        )
    );

    // ...
});

However, letting the Application Service decide how to build the DTO reveals another
limitation. As building the DTO depends exclusively on the Application Service, adapting
the DTO to different clients will be very difficult. Consider the data needed for a redirect on
a Web Controller and the data needed for a REST response for the same use case. Not the
same data at all.



Application

[ 310 ]

Let's allow the client to define how to build the DTO by passing a specific DTO Assembler:

class SignUpUserService
{
    private $userDtoAssembler;

    public function __construct(
        UserRepository $userRepository,
        UserDTOAssembler $userDtoAssembler
    ) {
        $this->userRepository = $userRepository;
        $this->userDtoAssembler = $userDtoAssembler;
    }

    public function execute(SignUpUserRequest $request)
    {
        $user = // ...

        return $this->userDtoAssembler->assemble($user);
    }
}

Now the client can customize the response by passing a specific UserDTOAssembler.

Data Transformers
There are some cases where generating intermediate DTOs for more complex responses like
JSON, XML, CSV, and iCAL Contact could be seen as an unnecessary overhead. We could
output the representation in a buffer and ask for it later on the delivery side.

Transformers help reduce this overhead by transforming high-level Domain concepts into
low-level client details. Let's see an example:

interface UserDataTransformer
{
    public function write(User $user);

    /**
     * @return mixed
     */
    public function read();
}



Application

[ 311 ]

Consider the case of generating different data representations for a given product. Usually,
the product information is served through a web interface (HTML), but we might be
interested in offering other formats, like XML, JSON, or CSV. This might enable integrations
with other Services.

Consider a similar case for a blog. We might expose our potential as writers in HTML to the
world, but some people will be interested in consuming our articles through RSS. The use
cases — Application Services — remain the same. The representation doesn't.

DTOs are a clean and simple solution that could be passed to template engines for different
representations, but this might complicate the logic of this last step of data transformation,
as the logic for such templates could become a problem to maintain, test, and understand.

Data Transformers might be a better approach on specific cases. These are just black boxes
with Domain concepts (Aggregates, Entities, and so on.) as inputs and read-only
representations (XML, JSON, CSV, and so on.) as outputs. These transformers could be
really easy to test:

class JsonUserDataTransformer implements UserDataTransformer
{
    private $data;

    public function write(User $user)
    {
        // More complex logic could be placed here
        // As using JMSSerializer, native json, etc.
        $this->data = json_encode($user);
    }

    /**
     * @return string
     */
    public function read()
    {
        return $this->data;
    }
}



Application

[ 312 ]

That was easy. Wondering how the XML or CSV one would look? Let's see how to integrate
the Data Transformer with our Application Service:

class SignUpUserService
{
    private $userRepository;
    private $userDataTransformer;

    public function __construct(
        UserRepository $userRepository,
        UserDataTransformer $userDataTransformer
    ) {
        $this->userRepository = $userRepository;
        $this->userDataTransformer = $userDataTransformer;
    }

    public function execute(SignUpUserRequest $request)
    {
        $user = // ...
        $this->userDataTransformer()->write($user);
    }

    /**
     * @return UserDataTransformer
     */
    public function userDataTransformer()
    {
        return $this->userDataTransformer;
    }
}

That's similar to the DTO Assembler approach, but this time without returning a concrete
value. The Data Transformer is being used to hold and interact with the data.

The main issue with DTOs is the overhead of writing them. Most of the time, your Domain
concepts and DTO representations will present the same structure. Most of the time, you'll
feel it's not worth your time to make such a mapping. That said, the relationship between
representations and Aggregates is not 1:1. You can represent two Aggregates together in a
single representation. You can also represent the same Aggregate in multiple ways. How
you do it always depends on your use cases.



Application

[ 313 ]

However, according to Martin Fowler:

One case where it is useful to use something like a DTO is when you have a
significant mismatch between the model in your presentation layer and the
underlying domain model. In this case it makes sense to make presentation
specific facade/gateway that maps from the domain model and presents an
interface that's convenient for the presentation. It fits in nicely with Presentation
Model. This is worth doing, but it is only worth doing for screens that have this
mismatch (in this case it isn't extra work, since you'd have to do it in the screen
anyway.)

We think the long-term vision will be worth the investment. On medium to big projects,
interface representations and Domain concepts change at very different rhythms. You
might want to decouple them from each other to lower the friction for updates. Using DTOs
or Data Transformers allows you to evolve your model freely without having to think about
breaking the layout all the time.

Multiple Application Services on Compound
Layouts
Most of the time, no layout is as simple as a single Application Service. Our projects have
pretty complicated interfaces.

Consider the homepage of a specific project. How can we render so many pieces and use
cases? There are a few options, so let's check them out.

AJAX Content Integration
You could let the browser ask for different endpoints directly and combine the data in the
layout right after through AJAX or Hijax. This will avoid mixing a lot of Application
Services in your controllers, but it might have a performance penalty, depending on the
number of requests triggered.

http://www.martinfowler.com/books/eaa.html
https://en.wikipedia.org/wiki/Hijax


Application

[ 314 ]

ESI Content Integration
Edge Side Includes (ESI) is a tiny markup language similar to the previous approach, but
on the server side. It requires additional effort configuring extra middleware, like NGINX
or Varnish, to make it work. Includes (ESI) is a tiny markup language similar to the
previous approach, but on the server side. It requires additional effort configuring extra
middleware, like NGINX or Varnish, to make it work.

Symfony Sub Requests
If you use Symfony, Sub Requests could be an interesting option. According to the Symfony
Documentation:

In addition to the main request that's sent into HttpKernel::handle, you can also send
so-called sub request. A sub request looks and acts like any other request, but typically
serves to render just one small portion of a page instead of a full page. You'll most
commonly make sub-requests from your controller (or perhaps from inside a template,
that's being rendered by your controller). This creates another full request-response cycle
where this new Request is transformed into a Response. The only difference internally is
that some listeners (Example: security) may only act upon the master request. Each listener
is passed some sub-class of KernelEvent, whose isMasterRequest() can be used to
check if the current request is a master or sub request.

This is great, as you'll get the benefits of invoking separate Application Services without
AJAX penalties or complicated ESI configurations.

One Controller, Multiple Application Services
One last option could be managing multiple Application Services within the same
controller, though the controller logic could get a little bit dirty, as it'll handle and merge the
responses to pass to the view.

https://en.wikipedia.org/wiki/Edge_Side_Includes
http://symfony.com/doc/current/components/http_kernel/introduction.html#sub-requests
http://symfony.com/doc/current/components/http_kernel/introduction.html#sub-requests


Application

[ 315 ]

Testing Application Services
As you're interested in testing the behavior of the Application Service itself, there's no need
to turn it into an integration test with complicated setups going against a real database.
You're not interested in testing the low-level details, so most of the time, a unit test will be
enough:

class SignUpUserServiceTest extends \PHPUnit_Framework_TestCase
{
    /**
     * @var \Lw\Domain\Model\User\UserRepository
     */
    private $userRepository;

    /**
     * @var SignUpUserService
     */
    private $signUpUserService;

    public function setUp()
    {
        $this->userRepository = new InMemoryUserRepository();
        $this->signUpUserService = new SignUpUserService(
            $this->userRepository
        );
    }

    /**
     * @test
     * @expectedException
     *     \Lw\Domain\Model\User\UserAlreadyExistsException
     */
    public function alreadyExistingEmailShouldThrowAnException()
    {
        $this->executeSignUp();
        $this->executeSignUp();
    }

    private function executeSignUp()
    {
        return $this->signUpUserService->execute(
            new SignUpUserRequest(
                'user@example.com',
                'password'
            )
        );
    }



Application

[ 316 ]

    /**
     * @test
     */
    public function afterUserSignUpItShouldBeInTheRepository()
    {
        $user = $this->executeSignUp();

        $this->assertSame(
            $user,
            $this->userRepository->ofId($user->id())
        );
    }
}

We've used an in-memory implementation for the User Repository. This is what is called a
Fake: a fully functional implementation for the Repository that will make our test work as a
unit. We don't need to go to the database to test the behavior of this class. That would make
our test slow and fragile.

Checking for a Domain Events submission might be interesting too. If creating a user fires a
user registered event, ensuring it's been triggered might be a good idea:

class SignUpUserServiceTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function itShouldPublishUserRegisteredEvent()
    {
        $subscriber = new SpySubscriber();
        $id = DomainEventPublisher::instance()->subscribe($subscriber);

        $user = $this->executeSignUp();
        $userId = $user->id();

        DomainEventPublisher::instance()->unsubscribe($id);
        $this->assertUserRegisteredEventPublished(
            $subscriber, $userId
        );
    }

    private function assertUserRegisteredEventPublished(
        $subscriber, $userId
    ) {
        $this->assertInstanceOf(



Application

[ 317 ]

            'UserRegistered', $subscriber->domainEvent
        );
        $this->assertTrue(
            $subscriber->domainEvent->userId()->equals($userId)
        );
    }
}

class SpySubscriber implements DomainEventSubscriber
{
    public $domainEvent;

    public function handle($aDomainEvent)
    {
        $this->domainEvent = $aDomainEvent;
    }

    public function isSubscribedTo($aDomainEvent)
    {
        return true;
    }
}

Transactions
Transactions are an implementation detail related to the persistence mechanism. The
Domain layer shouldn't be aware of this low-level implementation detail. Thinking about
beginning, committing, or rolling back a transaction at this level is a big smell. This level of
detail belongs to the Infrastructure layer.

The best way of handling transactions is to not handle them at all. We could wrap our
Application Services with a Decorator implementation for handling the transaction session
automatically.

We've implemented a solution to this problem in one of our repositories, and you can check
it out here:

interface TransactionalSession
{
    /**
     * @return mixed
     */
    public function executeAtomically(callable $operation);
}

https://github.com/dddinphp/ddd


Application

[ 318 ]

This contract takes a piece of code and executes it atomically. Depending on your
persistence mechanism, you'll end up with different implementations.

Let's see how we could do it with Doctrine ORM:

class DoctrineSession implements TransactionalSession
{
    private $entityManager;

    public function __construct(EntityManager $entityManager)
    {
        $this->entityManager = $entityManager;
    }

    public function executeAtomically(callable $operation)
    {
        return $this->entityManager->transactional($operation);
    }
}

This is how a client would use the previous code:

/** @var EntityManager $em */
$nonTxApplicationService = new SignUpUserService(
    $em->getRepository('BoundedContext\Domain\Model\User\User')
);

$txApplicationService = new TransactionalApplicationService(
    $nonTxApplicationService,
    new DoctrineSession($em)
);

$response = $txApplicationService->execute(
    new SignUpUserRequest(
        'user@example.com',
        'password'
    )
);

Now that we have the Doctrine implementation for transactional sessions, it would be great
to create a Decorator for our Application Services. With this approach, we make
transactional requests transparent to the Domain:

class TransactionalApplicationService implements ApplicationService
{
    private $session;
    private $service;



Application

[ 319 ]

    public function __construct(
        ApplicationService $service, TransactionalSession $session
    ) {
        $this->session = $session;
        $this->service = $service;
    }

    public function execute(BaseRequest $request)
    {
        $operation = function () use ($request) {
            return $this->service->execute($request);
        };

        return $this->session->executeAtomically($operation);
    }
}

A nice side effect of using Doctrine Session is that it automatically manages the flush
method, so you don't need to add the flush inside your Domain or Infrastructure.

Security
In case you're wondering how to manage and handle user credentials and security in
general, unless it's the responsibility of your Domain, we recommend letting the framework
handle it. The user session is a concern of the delivery mechanism. Polluting the Domain
with such concepts will make it harder to develop.

Domain Events
Domain Event listeners have to be configured before the Application Service gets executed,
or nobody will be noticed. There are situations where you'll have to be explicit and
configure the listener before executing the Application Service:

// ...
$subscriber = new SpySubscriber();
DomainEventPublisher::instance()->subscribe($subscriber);

$applicationService = // ...
$applicationService->execute(...);

Most of the time, this will be done by configuring the Dependency Injection Container.



Application

[ 320 ]

Command Handlers
An interesting way of executing Application Services is through a Command Bus library. A
good one is Tactician. From the Tactician website:

What is a Command Bus? The term is mostly used when we combine the Command
pattern with a service layer. Its job is to take a Command object (which
describes what the user wants to do) and match it to a Handler (which executes
it). This can help structure your code neatly.

— our Application Services are the Service Layer, and our Request objects look pretty much
like Commands.

Fair enough — our Application Services are the Service Layer, and our Request objects look
pretty much like Commands. Wouldn't it be great if we had a mechanism to link all the
Application Services, and then based on the Request, execute the correct one? Well, that's
actually what a Command Bus is.

Tactician Library and Other Options
Tactician is a Command Bus library, which allows you to use the Command pattern for
your Application Services. It's especially convenient for Application Services, but you could
use any kind of input.

Let's see an example from the Tactician website:

// You build a simple message object like this:
class PurchaseProductCommand
{
    protected $productId;
    protected $userId;

    // ...and constructor to assign those properties...
}

// And a Handler class that expects it:
class PurchaseProductHandler
{
    public function handle(PurchaseProductCommand $command)
    {
        // use command to update your models, etc
    }
}
// And then in your Controllers, you can fill in the command using your

https://tactician.thephpleague.com/
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Command_pattern
http://martinfowler.com/eaaCatalog/serviceLayer.html
http://tactician.thephpleague.com/


Application

[ 321 ]

favorite
// form or serializer library, then drop it in the CommandBus and you're
done!
$command = new PurchaseProductCommand(42, 29);
$commandBus->handle($command);

That's it. Tactician is the $commandBus Service. It does all the plumbing for finding the right
handler and method, which can avoid a lot of boilerplate code. Here, Commands and
Handlers are just normal classes, but you can configure whichever one fits your app better.

In summary, we can conclude that Commands are just Request objects, and Command
Handlers are just Application Services.

A cool thing about Tactician (and Command Buses in general) is that they're really easy to
extend. Tactician provides plug-ins for common tasks, like logging and database
transactions. That way, you can forget about setting up the wiring on every handler.

Another interesting plug-in for Tactician is Bernard integration. Bernard is an
asynchronous job queue that allows you to leave some tasks for later processing. Heavy
processes block the response. Most of the time, we can branch and delay their execution for
later. For the best experience, answer the customer as fast as possible and let them know
once the branched processes are done.

Matthias Noback has developed another similar project, called SimpleBus, that can be used
as an alternative to Tactician. The main difference is that SimpleBus Command Handlers
don't have a return value.

Wrap-Up
Application Services represent the Application layer of your Bounded Context. These high-
level use cases should be relatively simple and skinny, as their purpose evolves around
Domain coordination. Application Services are the entry point for Domain logic interaction.
We've seen that Requests and Commands keep things organized; that DTOs and Data
Transformers allow us to decouple data representation from Domain conceptualization;
that building Application Services is pretty straightforward with Dependency Injection
Containers; and that we have plenty of options for combining Application Services in
complex layouts.

http://bernard.readthedocs.org/
http://simplebus.github.io/MessageBus/


12
Integrating Bounded Contexts

Every enterprise application is typically composed of several areas in which the company
operates. Areas such as billing, inventory, shipping management, catalog, and so on are
common examples. The easiest manner in which to manage all these concerns may seem to
lean toward a monolithic system. But, you might wonder, does it have to be this way?
What if any friction garnered between teams working on these separate areas could be
reduced by splitting this big monolithic application into smaller, independent chunks? In
this chapter, we'll explore how to do this, so be prepared for insights and heuristics around
strategical design.

Dealing with Distributed Systems
Dealing with distributed systems is hard. Breaking a system into
independent autonomous parts has its benefits, but it also increases
complexity. For example, the coordination and synchronization of
distributed systems is not trivial, and as a result, should be considered
carefully. As Martin Fowler said in the PoEAA book, the first law of
distributed systems is always: Don't distribute.

Integration Through the Data Store
One of the most commonly used techniques to integrate different parts of an application has
always been to share the same data store, along with the same code base. This is usually
known as a monolithic application, and it often ends up with a single data store that hosts
the data related to all the concerns within the application.

https://www.martinfowler.com/books/eaa.html


Integrating Bounded Contexts

[ 323 ]

Consider an e-commerce application. A shared data store would contain all concerns
(Example: tables within a relational database) surrounding the catalog, billing, inventory,
and so on. There's nothing wrong with this approach per se—for example, in small linear
applications where the complexity is not too high. However, within complex Domains,
some issues can arise. If you share data across many tables touching multiple application
concerns, transactions will have a big impact on performance.

Another less technical problem that could develop is in regard to the Ubiquitous Language.
The main advantage of the separation of Bounded Contexts is having a single Ubiquitous
Language for each one. In doing so, models will be separated into their own Contexts.
Mixing all models together within the same Context can lead to ambiguity and confusion.

Going back to the e-commerce system, imagine we want to introduce the concept of a t-
shirt. Within the catalogue Context, a t-shirt would be a product with properties like color,
size, material, and maybe some fancy pictures. In the inventory system, however, we don't
really want to concern ourselves with these things. Here, a product has a different meaning,
where we care about different properties like weight, location in the warehouse, or dimensions.
Mixing both Contexts together will tangle concepts and complicate the design. In Domain-
Driven Design terms, mixing concepts in this manner is what is called a Shared Kernel.

Shared Kernel
Designate some subset of the domain model that the teams agree to share.
Of course this includes, along with this subset of the model, the subset of
code or of the database design associated with that part of the model. This
explicitly shared stuff has special status, and shouldn't be changed
without consultation with the other team. Integrate a functional system
frequently, but somewhat less often than the pace of CONTINUOUS
INTEGRATION within the teams. At these integrations, run the tests of
both teams.  Eric Evans - Domain-Driven Design: Tackling Complexity
in the Heart of Software

We don't recommend using a Shared Kernel, as multiple teams can collide within the
development of it, which not only results in maintenance issues but also becomes a point of
friction. However, if you opt to use a Shared Kernel, changes should be agreed upon
beforehand and between all parties involved. Conceptually, this approach has other
problems, such as people seeing it as a bag to place stuff that doesn't belong anywhere else,
and this grows indefinitely. A better way of dealing with the ever-growing complexity of
the monolith is to break it up in different autonomous pieces, such as communicating
through REST, RPC, or messaging systems. This requires drawing clear boundaries, with
each Context likely ending up with its own Infrastructure—data stores, servers, messaging
middleware, and so on — and even its own team.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Integrating Bounded Contexts

[ 324 ]

As you might imagine, this could lead to some degree of duplication, but that's a tradeoff
that we're willing to make in order to reduce complexity. In Domain-Driven Design, we call
these independent pieces Bounded Contexts.

Integration Relationships

Customer - Supplier
When there's a unidirectional integration between two Bounded Contexts, where one acts
as a provider (upstream) and the other as a client (downstream), we'll end up with
Customer - Supplier Development Teams.

Establish a clear customer/supplier relationship between the two teams. In
planning sessions, make the downstream team play the customer role to
the upstream team. Negotiate and budget tasks for downstream
requirements so that everyone understands the commitment and schedule.
Jointly develop automated acceptance tests that will validate the interface
expected. Add these tests to the upstream team's test suite, to be run as
part of its' continuous integration. This testing will free the upstream team
to make changes without fear of side effects downstream. Eric Evans -
Domain-Driven Design: Tackling Complexity in the Heart of

Software.

Customer - Supplier Development Teams are the most common way of integrating
Bounded Contexts and usually represent a win-win situation when teams work closely.

Separate Ways
Continuing with the e-commerce example, think about reporting revenue to an old legacy
retailer financial system. The integration could be incredibly expensive, resulting in it not
being worth the effort to implement. In Domain-Driven Design strategic terms, this is
known as Separate Ways.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Integrating Bounded Contexts

[ 325 ]

Integration is always expensive. Sometimes the benefit is small. So Declare
a BOUNDED CONTEXT to have no connection to the others at all,
allowing developers to find simple, specialized solutions within this small
scope. Eric Evans - Domain-Driven Design: Tackling Complexity in the
Heart of Software.

Conformist
Consider again the e-commerce example and integration with a third-party shipping
service. Both Domains differ in models, teams, and Infrastructure. The team responsible for
maintaining the third-party shipping service will not participate in your product planning
or provide any solutions to the e-commerce system. These teams don't have a close
relationship. We could choose to accept and conform to their Domain Model. In strategic
design, this is what we call a Conformist Integration.

Eliminate the complexity of translation between BOUNDED CONTEXTS
by slavishly adhering to the model of the upstream team. Although this
cramps the style of the downstream designers and probably does not yield
the ideal model for the application, choosing CONFORMITY enormously
simplifies integration. Also, you will share a UBIQUITOUS LANGUAGE
with your supplier team. The supplier is in the driver's seat, so it is good
to make communication easy for them. Altruism may be sufficient to get
them to share information with you. Eric Evans - Domain-Driven Design:
Tackling Complexity in the Heart of Software.

Implementing Bounded Context Integrations
To make things easier, we'll assume Bounded Contexts have a Customer - Supplier
relationship.

Modern RPC
With modern RPC, we refer to RPC through RESTful resources. A Bounded Context reveals
a clear interface to interact with to the outside world. It exposes resources that could be
manipulated through HTTP verbs. We could say that the Bounded Context offers a set of
services and operations. In strategical terms, this is what is called an Open Host Service.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Integrating Bounded Contexts

[ 326 ]

Open Host Service
Define a protocol that gives access to your subsystem as a set of
SERVICES. Open the protocol so that all who need to integrate with you
can use it. Enhance and expand the protocol to handle new integration
requirements, except when a single team has idiosyncratic needs. Then,
use a one-off translator to augment the protocol for that special case so
that the shared protocol can stay simple and coherent. Eric Evans -
Domain-Driven Design: Tackling Complexity in the Heart of Software.

Let's explore an example provided within the Last Wishes application that comes with
this book's GitHub organization.

The application is a web platform with the purpose of letting people save their last wills
before they die. There are two Contexts: one responsible for handling wills—the Will
Bounded Context—and one in charge of giving points to the users of the system—the
Gamification Context. In the Will Context, the user could have badges related to the
number of points the user made on the Gamification Context. This means that we need to
integrate both Contexts together in order to show the badges a user has on the Will Context.

The Gamification Context is a full-fledged event-driven application powered by a custom
event sourcing engine. It's a full-stack Symfony application that uses FOSRestBundle,
BazingaHateoasBundle, JMSSerializerBundle, NelmioApiDocBundle, and
OngrElasticsearchBundle to provide a level 3 and up REST API (commonly known as the
Glory of REST), according to the Richardson Maturity Model. All the Events triggered
within this Context are projected against an Elasticsearch server, in order to produce the
data needed for the views. We'll expose the number of points made for a given user through
an endpoint like http://gamification.context.host/api/users/{id}.

We'll also fetch the user projection from Elasticsearch and serialize it to a format previously
negotiated with the client:

namespace AppBundle\Controller;

use FOS\RestBundle\Controller\Annotations as Rest;
use FOS\RestBundle\Controller\FOSRestController;
use Nelmio\ApiDocBundle\Annotation\ApiDoc;

class UsersController extends FOSRestController
{
    /**
     * @ApiDoc(
     *     resource = true,
     *     description = "Finds a user given a user ID",
     *     statusCodes = {

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://github.com/dddinphp/last-wishes
https://github.com/dddinphp/last-wishes-gamify
http://symfony.com/doc/current/bundles/FOSRestBundle/index.html
https://github.com/willdurand/BazingaHateoasBundle
https://github.com/schmittjoh/JMSSerializerBundle
https://github.com/schmittjoh/JMSSerializerBundle
https://github.com/schmittjoh/JMSSerializerBundle
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html


Integrating Bounded Contexts

[ 327 ]

     *         200 = "Returned when the user have been found",
     *         404 = "Returned when the user could not be found"
     *     }
     * )
     *
     * @Rest\View(
     *     statusCode = 200
     * )
     */
    public function getUserAction($id)
    {
        $repo = $this->get('es.manager.default.user');
        $user = $repo->find($id);

        if (!$user) {
            throw $this->createNotFoundException(
                sprintf(
                    'A user with an ID of %s does not exist',
                    $id
                )
            );
        }
        return $user;
    }
}

As we explained in the Chapter 2, Architectural Styles reads are treated as an Infrastructure
concern, so there's no need to wrap them inside a Command / Command Handler flow.

The resulting JSON+HAL representation of a user will be like this:

{
    "id": "c3c587c6-610a-42df",
    "points": 0,
    "_links": {
        "self": {
            "href":
            "http://gamification.ctx/api/users/c3c587c6-610a-42df"
        }
    }
}



Integrating Bounded Contexts

[ 328 ]

Now we're in a good position to integrate both Contexts. We just need to write the client in
the Will Context for consuming the endpoint we've just created. Should we mix both
Domain Models? Digesting the Gamification Context directly will mean adapting the Will
Context to the Gamification one, resulting in a Conformist integration. However,
separating these concerns seems worth the effort. We need a layer for guaranteeing the
integrity and the consistency of the Domain Model within the Will Context, and we need to
translate points (Gamification) to badges (Will). In Domain-Driven Design, this translation
mechanism is what's called an Anti-Corruption layer.

Anti-Corruption Layer
Create an isolating layer to provide clients with functionality in terms of
their own domain model. The layer talks to the other system through its
existing interface, requiring little or no modification to the other system.
Internally, the layer translates in both directions as necessary between the
two models. Eric Evans - Domain-Driven Design: Tackling Complexity in
the Heart of Software.

So, what does the Anti-Corruption layer look like? Most of the time, Services will be
interacting with a combination of Adapters and Facades. The Services encapsulate and hide
the low-level complexities behind these transformations. Facades aid in hiding and
encapsulating access details required for fetching data from the Gamification model.
Adapters translate between models, often using specialized Translators.

Let's see how to define a User Service within the Will's model that will be responsible for
retrieving the badges earned by a given user:

namespace Lw\Domain\Model\User;

interface UserService
{
    public function badgesFrom(UserId $id);
}

Now let's look at the implementation on the Infrastructure side. We'll use an adapter for the
transformation process:

namespace Lw\Infrastructure\Service;

use Lw\Domain\Model\User\UserId;
use Lw\Domain\Model\User\UserService;

class TranslatingUserService implements UserService
{
    private $userAdapter;

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215


Integrating Bounded Contexts

[ 329 ]

    public function __construct(UserAdapter $userAdapter)
    {
        $this->userAdapter = $userAdapter;
    }

    public function badgesFrom(UserId $id)
    {
        return $this->userAdapter->toBadges($id);
    }
}

And here's the HTTP implementation for the UserAdapter:

namespace Lw\Infrastructure\Service;

use GuzzleHttp\Client;

class HttpUserAdapter implements UserAdapter
{
    private $client;

    public function __construct(Client $client)
    {
        $this->client = $client;
    }

    public function toBadges( $id)
    {
        $response = $this->client->get(
            sprintf('/users/%s', $id),
            [
                'allow_redirects' => true,
                'headers' => [
                    'Accept' => 'application/hal+json'
                ]
            ]
        );

        $badges = [];
        if (200 === $response->getStatusCode()) {
            $badges =
                (new UserTranslator())
                    ->toBadgesFromRepresentation(
                        json_decode(
                            $response->getBody(),
                            true
                        )
                    );



Integrating Bounded Contexts

[ 330 ]

        }
        return $badges;
    }
}

As you can see, the Adapter acts as a Facade to the Gamification Context too. We did it this
way, as fetching the User resource on the Gamification side is pretty straightforward. The
Adapter uses the UserTranslator to perform the translation:

namespace Lw\Infrastructure\Service;

use Lw\Infrastructure\Domain\Model\User\FirstWillMadeBadge;
use Symfony\Component\PropertyAccess\PropertyAccess;

class UserTranslator
{
    public function toBadgesFromRepresentation($representation)
    {
        $accessor = PropertyAccess::createPropertyAccessor();
        $points = $accessor->getValue($representation, 'points');
        $badges = [];
        if ($points > 3) {
            $badges[] = new FirstWillMadeBadge();
        }
        return $badges;
    }
}

The Translator specializes in transforming the points coming from the Gamification Context
into badges.

We've shown how to integrate two Bounded Contexts where respective teams share a
Customer-Supplier relationship. The Gamification Context exposes the integration through
an Open Host Service implemented by a RESTful protocol. On the other side, the Will
Context consumes the service through an Anti-Corruption layer responsible for translating
the model from one Domain to the other, ensuring the Will Context's integrity.

Message Queues
RESTful resources aren't the only way of enabling integrations between Bounded Contexts.
As we'll see, messaging middleware enables decoupled integrations between different
Contexts.



Integrating Bounded Contexts

[ 331 ]

Continuing with the Last Wishes application, we've just implemented a unidirectional
relationship between two teams to manage points and badges within their respective
Contexts. However, we left an important functionality out of scope on purpose: rewarding
the user every time they make a wish.

We could go for another Open Host Service with a pull strategy. The Will Context will be
pulling the Gamification Context periodically to get badges on sync (Example: through an
scheduler like Cron). This solution will impact the user's experience, and it'll waste a lot of
unnecessary resources.

A better approach is to use a messaging middleware. With this solution, Contexts could
push messages to a middleware (often a message queue). Interested parties will be able to
subscribe, inspect, and consume information on demand in a decoupled fashion. In order to
do this, we need a specialized, shared, and common communication language, so all the
parties can understand the information transmitted. This is what's called the Published
Language.

Published Language
Use a well-documented shared language that can express the necessary
domain information as a common medium of communication, translating
as necessary into and out of that language.  Eric Evans - Domain-Driven
Design: Tackling Complexity in the Heart of Software.

In thinking about the format of these messages and looking closer at our Domain Model, we
realize we already have what we need: Chapter 6, Domain-Events. It's not necessary to
define a new way of communicating between Bounded Contexts. Instead, we can just use
Domain Events to define a common language across Contexts. The definition of something
that Domain Experts care about that just happened fits perfectly with what we're looking for: a
formal Published Language.

In our example, we could use RabbitMQ as a messaging middleware. This is probably one
of the most reliable and robust messaging AMQP protocols out there. We'll also incorporate
the widely used PHP libraries php-amqplib and RabbitMQBundle.

Let's start with the Will Context, as it's the one that triggers Events when the user signs up
or when making a wish. As we've already seen in the Chapter 6, Domain-Events, it's a good
idea to store Domain Events into a persistent mechanism, so we'll assume that's what was
done. We need a message publisher to fetch and publish stored Domain Events from the
Event store to the messaging middleware. We already did the integration with RabbitMQ in
the Chapter 6, Domain-Events, so we just need to implement the code in the Gamification
Context. We'll listen for Events triggered by the Will Context. As we're using the Symfony
Framework, we take advantage of a Symfony package called RabbitMQBundle.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amqp.org/
https://github.com/php-amqplib/php-amqplib
https://github.com/php-amqplib/RabbitMqBundle


Integrating Bounded Contexts

[ 332 ]

We define two message consumers for the User Registered and Wish Was Made events:

namespace AppBundle\Infrastructure\Messaging\PhpAmqpLib;

use Lw\Gamification\Command\SignupCommand;
use OldSound\RabbitMqBundle\RabbitMq\ConsumerInterface;
use PhpAmqpLib\Message\AMQPMessage;

class PhpAmqpLibLastWillUserRegisteredConsumer
    implements ConsumerInterface
{
    private $commandBus;

    public function __construct($commandBus)
    {
        $this->commandBus = $commandBus;
    }

    public function execute(AMQPMessage $message)
    {
        $type = $message->get('type');

        if('Lw\Domain\Model\User\UserRegistered' === $type) {
            $event = json_decode($message->body);
            $eventBody = json_decode($event->event_body);

            $this->commandBus->handle(
                new SignupCommand($eventBody->user_id->id)
            );
            return true;
        }
        return false;
    }
}

Note that in this case, we're only processing messages with the type of
Lw\Domain\Model\User\UserRegistered:

namespace AppBundle\Infrastructure\Messaging\PhpAmqpLib;

use Lw\Gamification\Command\RewardUserCommand;
use Lw\Gamification\Domain\Model\AggregateDoesNotExist;
use OldSound\RabbitMqBundle\RabbitMq\ConsumerInterface;
use PhpAmqpLib\Message\AMQPMessage;

class PhpAmqpLibLastWillWishWasMadeConsumer implements ConsumerInterface
{
    private $commandBus;



Integrating Bounded Contexts

[ 333 ]

    public function __construct($commandBus)
    {
        $this->commandBus = $commandBus;
    }

    public function execute(AMQPMessage $message)
    {
        $type = $message->get('type');

        if ('Lw\Domain\Model\Wish\WishWasMade' === $type) {
            $event = json_decode($message->body);
            $eventBody = json_decode($event->event_body);

            try {
                $points = 5;
                $this->commandBus->handle(
                    new RewardUserCommand(
                        $eventBody->user_id->id,
                        $points
                    )
                );
            } catch (AggregateDoesNotExist $e) {
                // Noop
            }

            return true;
        }

        return false;
    }
}

Again, we're only interested in tracking Lw\Domain\Model\Wish\WishWasMade events.

In both cases, we use a Command Bus, which we discussed in the Chapter, Application.
However, we can summarize it as a highway that decouples the Command and Receiver.
The when and how a Command is executed is independent from who triggered it.

The Gamification Context uses Tactician (and TacticianBundle), a simple Command Bus
that can be extended and adapted to your system. So now we're almost ready to start
consuming Events from the Will Context.

http://tactician.thephpleague.com/
https://github.com/thephpleague/tactician-bundle


Integrating Bounded Contexts

[ 334 ]

The only thing we still need to do is define the RabbitMQBundle configuration in Symfony's
config.yml file:

services:
    last_will_user_registered_consumer:
        class:
            AppBundle\Infrastructure\Messaging\
                PhpAmqpLib\PhpAmqpLibLastWillUserRegisteredConsumer
        arguments:
            - @tactician.commandbus

    last_will_wish_was_made_consumer:
        class:
            AppBundle\Infrastructure\Messaging\
                PhpAmqpLib\PhpAmqpLibLastWillWishWasMadeConsumer
        arguments:
            - @tactician.commandbus

old_sound_rabbit_mq:
    connections:
         default:
              host: " %rabbitmq_host%"
              port: " %rabbitmq_port%"
              user: " %rabbitmq_user%"
              password: " %rabbitmq_password%"
              vhost: " %rabbitmq_vhost%"
              lazy: true

    consumers:
        last_will_user_registered:
            connection: default
            callback: last_will_user_registered_consumer

            exchange_options:
                name: last-will
                type: fanout

            queue_options:
                name: last-will

        last_will_wish_was_made:
            connection: default
            callback: last_will_wish_was_made_consumer

            exchange_options:
                name: last-will
                type: fanout



Integrating Bounded Contexts

[ 335 ]

            queue_options:
                name: last-wil

The most convenient RabbitMQ configuration is probably the [Publish /
Subscribe] pattern. All messages published by the Will Context will be delivered to all
connected consumers. This is called fanout in the RabbitMQ exchange configuration.

The exchange consists of an agent being in charge of delivering messages to the
corresponding queues:

> php app/console rabbitmq:consumer --messages=1000
last_will_user_registered
> php app/console rabbitmq:consumer --messages=1000 last_will_wish_was_made

With those two commands, Symfony will execute both consumers and they'll start listening
for Domain Events. We've specified a limit of 1,000 messages to consume, as PHP isn't the
best platform for executing long-running processes. It also might be a good idea to use
something like Supervisor to monitor and restart processes periodically.

Wrap-Up
Although we've only seen a small part of it, strategical design is at the heart and soul of
Domain-Driven Design. It's an essential part that aids in developing better and more
semantic models. We recommend using messaging middleware to integrate Bounded
Contexts, as this naturally leads to simpler, decoupled, and Event-driven architectures.

https://www.rabbitmq.com/tutorials/tutorial-three-php.html
https://www.rabbitmq.com/tutorials/tutorial-three-php.html
http://supervisord.org/


Hexagonal Architecture with
PHP

The following article was posted in php|architect magazine in June 2014 by Carlos
Buenosvinos.

Introduction
With the rise of Domain-Driven Design (DDD), architectures promoting domain centric
designs are becoming more popular. This is the case with Hexagonal Architecture, also
known as Ports and Adapters, that seems to have being rediscovered just now by PHP
developers. Invented in 2005 by Alistair Cockburn, one of the Agile Manifesto authors, the
Hexagonal Architecture allows an application to be equally driven by users, programs,
automated tests or batch scripts, and to be developed and tested in isolation from its
eventual run-time devices and databases. This results into agnostic infrastructure web
applications that are easier to test, write and maintain. Let's see how to apply it using real
PHP examples.

Your company is building a brainstorming system called Idy. Users add and rate ideas so
the most interesting ones can be implemented in a company. It is Monday morning, another
sprint is starting and you are reviewing some user stories with your team and your Product
Owner. As a not logged in user, I want to rate an idea and the author should be notified
by email, that's a really important one, isn't it?



Hexagonal Architecture with PHP

[ 337 ]

First Approach
As a good developer, you decide to divide and conquer the user story, so you'll start with
the first part, I want to rate an idea. After that, you will face the author should be notified by
email. That sounds like a plan.

In terms of business rules, rating an idea is as easy as finding the idea by its identifier in the
ideas repository, where all the ideas live, add the rating, recalculate the average and save
the idea back. If the idea does not exist or the repository is not available we should throw an
exception so we can show an error message, redirect the user or do whatever the business
asks us for.

In order to execute this UseCase, we just need the idea identifier and the rating from the user.
Two integers that would come from the user request.

Your company web application is dealing with a Zend Framework 1 legacy application. As
most of companies, probably some parts of your app may be newer, more SOLID, and
others may just be a big ball of mud. However, you know that it does not matter at all
which framework you are using, it is all about writing clean code that makes maintenance a
low cost task for your company.

You're trying to apply some Agile principles you remember from your last conference, how
it was, yeah, I remember "make it work, make it right, make it fast". After some time
working you get something like Listing 1.

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        // Getting parameters from the request
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        // Building database connection
        $db = new Zend_Db_Adapter_Pdo_Mysql([
            'host'     => 'localhost',
            'username' => 'idy',
            'password' => '',
            'dbname'   => 'idy'
        ]);

        // Finding the idea in the database
        $sql = 'SELECT * FROM ideas WHERE idea_id = ?';
        $row = $db->fetchRow($sql, $ideaId);
        if (!$row) {



Hexagonal Architecture with PHP

[ 338 ]

            throw new Exception('Idea does not exist');
        }

        // Building the idea from the database
        $idea = new Idea();
        $idea->setId($row['id']);
        $idea->setTitle($row['title']);
        $idea->setDescription($row['description']);
        $idea->setRating($row['rating']);
        $idea->setVotes($row['votes']);
        $idea->setAuthor($row['email']);

        // Add user rating
        $idea->addRating($rating);

        // Update the idea and save it to the database
        $data = [
            'votes' => $idea->getVotes(),
            'rating' => $idea->getRating()
        ];
        $where['idea_id = ?'] = $ideaId;
        $db->update('ideas', $data, $where);

        // Redirect to view idea page
        $this->redirect('/idea/' . $ideaId);
    }
}

I know what readers are thinking: Who is going to access data directly from the controller? This
is a 90's example!, ok, ok, you're right. If you are already using a framework, it is likely that
you are also using an ORM. Maybe done by yourself or any of the existing ones such as
Doctrine, Eloquent, Zend, and so on. If this is the case, you are one step further from those
who have some Database connection object but don't count your chickens before they're
hatched.

For newbies, Listing 1 code just works. However, if you take a closer look at the Controller,
you'll see more than business rules, you'll also see how your web framework routes a
request into your business rules, references to the database or how to connect to it. So close,
you see references to your infrastructure.

Infrastructure is the detail that makes your business rules work. Obviously, we need some
way to get to them (API, web, console apps, and so on.) and effectively we need some
physical place to store our ideas (memory, database, NoSQL, and so on.). However, we
should be able to exchange any of these pieces with another that behaves in the same way
but with different implementations. What about starting with the Database access?



Hexagonal Architecture with PHP

[ 339 ]

All those Zend_DB_Adapter connections (or straight MySQL commands if that's your case)
are asking to be promoted to some sort of object that encapsulates fetching and persisting
Idea objects. They are begging for being a Repository.

Repositories and the Persistence Edge
Whether there is a change in the business rules or in the infrastructure, we must edit the
same piece of code. Believe me, in CS, you don't want many people touching the same piece
of code for different reasons. Try to make your functions do one and just one thing so it is 
less probable having people messing around with the same piece of code. You can learn
more about this by having a look at the Single Responsibility Principle (SRP). For more
information about this principle: h t t p ://w w w . o b j e c t m e n t o r . c o m /r e s o u r c e s /a r t i c l e s /s r
p . p d f

Listing 1 is clearly this case. If we want to move to Redis or add the author notification
feature, you'll have to update the rateAction method. Chances to affect aspects of the
rateAction not related with the one updating are high. Listing 1 code is fragile. If it is
common in your team to hear If it works, don't touch it, SRP is missing.

So, we must decouple our code and encapsulate the responsibility for dealing with fetching
and persisting ideas into another object. The best way, as explained before, is using a
Repository. Challenged accepted! Let's see the results in Listing 2:

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        $ideaRepository = new IdeaRepository();
        $idea = $ideaRepository->find($ideaId);
        if (!$idea) {
            throw new Exception('Idea does not exist');
        }

        $idea->addRating($rating);
        $ideaRepository->update($idea);

        $this->redirect('/idea/' . $ideaId);
    }
}

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf


Hexagonal Architecture with PHP

[ 340 ]

class IdeaRepository
{
    private $client;

    public function __construct()
    {
        $this->client = new Zend_Db_Adapter_Pdo_Mysql([
            'host' => 'localhost',
            'username' => 'idy',
            'password' => '',
            'dbname' => 'idy'
        ]);
    }

    public function find($id)
    {
        $sql = 'SELECT * FROM ideas WHERE idea_id = ?';
        $row = $this->client->fetchRow($sql, $id);
        if (!$row) {
            return null;
        }

        $idea = new Idea();
        $idea->setId($row['id']);
        $idea->setTitle($row['title']);
        $idea->setDescription($row['description']);
        $idea->setRating($row['rating']);
        $idea->setVotes($row['votes']);
        $idea->setAuthor($row['email']);

        return $idea;
    }

    public function update(Idea $idea)
    {
        $data = [
            'title' => $idea->getTitle(),
            'description' => $idea->getDescription(),
            'rating' => $idea->getRating(),
            'votes' => $idea->getVotes(),
            'email' => $idea->getAuthor(),
        ];

        $where = ['idea_id = ?' => $idea->getId()];
        $this->client->update('ideas', $data, $where);
    }
}



Hexagonal Architecture with PHP

[ 341 ]

The result is nicer. The rateAction of the IdeaController is more understandable.
When read, it talks about business rules. IdeaRepository is a business concept. When
talking with business guys, they understand what an IdeaRepository is: A place where I
put Ideas and get them.

A Repository mediates between the domain and data mapping layers using a collection-like interface
for accessing domain objects. as found in Martin Fowler's pattern catalog.

If you are already using an ORM such as Doctrine, your current repositories extend from an
EntityRepository. If you need to get one of those repositories, you ask Doctrine
EntityManager to do the job. The resulting code would be almost the same, with an extra
access to the EntityManager in the controller action to get the IdeaRepository.

At this point, we can see in the landscape one of the edges of our hexagon, the persistence
edge. However, this side is not well drawn, there is still some relationship between what an
IdeaRepository is and how it is implemented.

In order to make an effective separation between our application boundary and the
infrastructure boundary we need an additional step. We need to explicitly decouple behavior
from implementation using some sort of interface.

Decoupling Business and Persistence
Have you ever experienced the situation when you start talking to your Product Owner,
Business Analyst or Project Manager about your issues with the Database? Can you
remember their faces when explaining how to persist and fetch an object? They had no idea
what you were talking about.

The truth is that they don't care, but that's ok. If you decide to store the ideas in a MySQL
server, Redis or SQLite it is your problem, not theirs. Remember, from a business
standpoint, your infrastructure is a detail. Business rules are not going to change whether
you use Symfony or Zend Framework, MySQL or PostgreSQL, REST or SOAP, and so on.

That's why it is important to decouple our IdeaRepository from its implementation. The
easiest way is to use a proper interface. How can we achieve that? Let's take a look at
Listing 3.

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');



Hexagonal Architecture with PHP

[ 342 ]

        $rating = $this->request->getParam('rating');

        $ideaRepository = new MySQLIdeaRepository();
        $idea = $ideaRepository->find($ideaId);
        if(!$idea) {
            throw new Exception('Idea does not exist');
        }

        $idea->addRating($rating);
        $ideaRepository->update($idea);

        $this->redirect('/idea/' . $ideaId);
    }
}

interface IdeaRepository
{
    /**
     * @param int $id
     * @return null|Idea
     */
    public function find($id);

    /**
     * @param Idea $idea
     */
    public function update(Idea $idea);
}

class MySQLIdeaRepository implements IdeaRepository
{
    // ...
}

Easy, isn't it? We have extracted the IdeaRepository behavior into an interface, renamed
the IdeaRepository into MySQLIdeaRepository and updated the rateAction to use
our MySQLIdeaRepository. But what's the benefit?

We can now exchange the repository used in the controller with any implementing the
same interface. So, let's try a different implementation.



Hexagonal Architecture with PHP

[ 343 ]

Migrating our Persistence to Redis
During the sprint and after talking to some mates, you realize that using a NoSQL strategy
could improve the performance of your feature. Redis is one of your best friends. Go for it
and show me your Listing 4:

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        $ideaRepository = new RedisIdeaRepository();
        $idea = $ideaRepository->find($ideaId);
        if (!$idea) {
            throw new Exception('Idea does not exist');
        }

        $idea->addRating($rating);
        $ideaRepository->update($idea);

        $this->redirect('/idea/' . $ideaId);
    }
}

interface IdeaRepository
{
    // ...
}

class RedisIdeaRepository implements IdeaRepository
{
    private $client;

    public function __construct()
    {
        $this->client = new Predis\Client();
    }

    public function find($id)
    {
        $idea = $this->client->get($this->getKey($id));
        if (!$idea) {
            return null;
        }
        return unserialize($idea);



Hexagonal Architecture with PHP

[ 344 ]

    }

    public function update(Idea $idea)
    {
        $this->client->set(
            $this->getKey($idea->getId()),
            serialize($idea)
        );
    }

    private function getKey($id)
    {
        return 'idea:' . $id;
    }
}

Easy again. You've created a RedisIdeaRepository that implements IdeaRepository
interface and we have decided to use Predis as a connection manager. Code looks smaller,
easier and faster. But what about the controller? It remains the same, we have just changed
which repository to use, but it was just one line of code.

As an exercise for the reader, try to create the IdeaRepository for SQLite, a file or an in-
memory implementation using arrays. Extra points if you think about how ORM
Repositories fit with Domain Repositories and how ORM @annotations affect this
architecture.

Decouple Business and Web Framework
We have already seen how easy it can be to changing from one persistence strategy to
another. However, the persistence is not the only edge from our Hexagon. What about how
the user interacts with the application?

Your CTO has set up in the roadmap that your team is moving to Symfony2, so when
developing new features in you current ZF1 application, we would like to make the
incoming migration easier. That's tricky, show me your Listing 5:

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        $ideaRepository = new RedisIdeaRepository();



Hexagonal Architecture with PHP

[ 345 ]

        $useCase = new RateIdeaUseCase($ideaRepository);
        $response = $useCase->execute($ideaId, $rating);

        $this->redirect('/idea/' . $ideaId);
    }
}

interface IdeaRepository
{
    // ...
}

class RateIdeaUseCase
{
    private $ideaRepository;

    public function __construct(IdeaRepository $ideaRepository)
    {
        $this->ideaRepository = $ideaRepository;
    }

    public function execute($ideaId, $rating)
    {
        try {
            $idea = $this->ideaRepository->find($ideaId);
        } catch(Exception $e) {
            throw new RepositoryNotAvailableException();
        }

        if (!$idea) {
            throw new IdeaDoesNotExistException();
        }

        try {
            $idea->addRating($rating);
            $this->ideaRepository->update($idea);
        } catch(Exception $e) {
            throw new RepositoryNotAvailableException();
        }

        return $idea;
    }
}



Hexagonal Architecture with PHP

[ 346 ]

Let's review the changes. Our controller is not having any business rules at all. We have
pushed all the logic inside a new object called RateIdeaUseCase that encapsulates it. This
object is also known as Controller, Interactor or Application Service.

The magic is done by the execute method. All the dependencies such as the
RedisIdeaRepository are passed as an argument to the constructor. All the references to
an IdeaRepository inside our UseCase are pointing to the interface instead of any
concrete implementation.

That's really cool. If you take a look inside RateIdeaUseCase, there is nothing talking
about MySQL or Zend Framework. No references, no instances, no annotations, nothing. It
is like your infrastructure does not mind. It just talks about business logic.

Additionally, we have also tuned the Exceptions we throw. Business processes also have
exceptions. NotAvailableRepository and IdeaDoesNotExist are two of them. Based
on the one being thrown we can react in different ways in the framework boundary.

Sometimes, the number of parameters that a UseCase receives can be too many. In order to
organize them, it is quite common to build a UseCase request using a Data Transfer Object
(DTO) to pass them together. Let's see how you could solve this in Listing 6:

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        $ideaRepository = new RedisIdeaRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $response = $useCase->execute(
            new RateIdeaRequest($ideaId, $rating)
        );

        $this->redirect('/idea/' . $response->idea->getId());
    }
}

class RateIdeaRequest
{
    public $ideaId;
    public $rating;

    public function __construct($ideaId, $rating)
    {
        $this->ideaId = $ideaId;



Hexagonal Architecture with PHP

[ 347 ]

        $this->rating = $rating;
    }
}

class RateIdeaResponse
{
    public $idea;

    public function __construct(Idea $idea)
    {
        $this->idea = $idea;
    }
}

class RateIdeaUseCase
{
    // ...

    public function execute($request)
    {
        $ideaId = $request->ideaId;
        $rating = $request->rating;

        // ...

        return new RateIdeaResponse($idea);
    }
}

The main changes here are introducing two new objects, a Request and a Response. They
are not mandatory, maybe a UseCase has no request or response. Another important detail
is how you build this request. In this case, we are building it getting the parameters from ZF
request object.

Ok, but wait, what's the real benefit? it is easier to change from one framework to other, or
execute our UseCase from another delivery mechanism. Let's see this point.

Rating an Idea Using the API
During the day, your Product Owner comes to you and says: by the way, a user should be able
to rate an idea using our mobile app. I think we will need to update the API, could you do it for this
sprint?. Here's the PO again. No problem!. Business is impressed with your commitment.



Hexagonal Architecture with PHP

[ 348 ]

As Robert C. Martin says: The Web is a delivery mechanism [...] Your system architecture should
be as ignorant as possible about how it is to be delivered. You should be able to deliver it as a console
app, a web app, or even a web service app, without undue complication or any change to the
fundamental architecture.

Your current API is built using Silex, the PHP micro-framework based on the Symfony2
Components. Let's go for it in Listing 7:

require_once __DIR__.'/../vendor/autoload.php';

$app = new Silex\Application();

// ... more routes

$app->get(
    '/api/rate/idea/{ideaId}/rating/{rating}',
    function ($ideaId, $rating) use ($app) {
        $ideaRepository = new RedisIdeaRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $response = $useCase->execute(
            new RateIdeaRequest($ideaId, $rating)
        );

        return $app->json($response->idea);
    }
);

$app->run();

Is there anything familiar to you? Can you identify some code that you have seen before? I'll
give you a clue:

$ideaRepository = new RedisIdeaRepository();
$useCase = new RateIdeaUseCase($ideaRepository);
$response = $useCase->execute(
    new RateIdeaRequest($ideaId, $rating)
);

Man! I remember those 3 lines of code. They look exactly the same as the web application. That's
right, because the UseCase encapsulates the business rules you need to prepare the request,
get the response and act accordingly.

We are providing our users with another way for rating an idea; another delivery mechanism.
The main difference is where we created the RateIdeaRequest from. In the first example,
it was from a ZF request and now it is from a Silex request using the parameters matched in
the route.



Hexagonal Architecture with PHP

[ 349 ]

Console App Rating
Sometimes, a UseCase is going to be executed from a Cron job or the command line. As
examples, batch processing or some testing command lines to accelerate the
development. While testing this feature using the web or the API, you realize that it would
be nice to have a command line to do it, so you don't have to go through the browser.

If you are using shell scripts files, I suggest you to check the Symfony Console component.
What would the code look like:

namespace Idy\Console\Command;

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class VoteIdeaCommand extends Command
{
    protected function configure()
    {
        $this
            ->setName('idea:rate')
            ->setDescription('Rate an idea')
            ->addArgument('id', InputArgument::REQUIRED)
            ->addArgument('rating', InputArgument::REQUIRED);
    }

    protected function execute(
        InputInterface $input,
        OutputInterface $output
    ) {
        $ideaId = $input->getArgument('id');
        $rating = $input->getArgument('rating');

        $ideaRepository = new RedisIdeaRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $response = $useCase->execute(
            new RateIdeaRequest($ideaId, $rating)
        );

        $output->writeln('Done!');
      }
 }



Hexagonal Architecture with PHP

[ 350 ]

Again those 3 lines of code. As before, the UseCase and its business logic remain
untouched, we are just providing a new delivery mechanism. Congratulations, you've
discovered the user side hexagon edge.

There is still a lot to do. As you may have heard, a real craftsman does TDD. We have
already started our story so we must be ok with just testing after.

Testing Rating an Idea UseCase
Michael Feathers introduced a definition of legacy code as code without tests. You don't want
your code to be legacy just born, do you?

In order to unit test this UseCase object, you decide to start with the easiest part, what
happens if the repository is not available? How can we generate such behavior? Do we stop
our Redis server while running the unit tests? No. We need to have an object that has such
behavior. Let's use a mock object in Listing 9:

class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase
{
    /**
     * @test
     */
    public function whenRepositoryNotAvailableAnExceptionIsThrown()
    {
        $this->setExpectedException('NotAvailableRepositoryException');
        $ideaRepository = new NotAvailableRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $useCase->execute(
            new RateIdeaRequest(1, 5)
        );
    }
}

class NotAvailableRepository implements IdeaRepository
{
    public function find($id)
    {
        throw new NotAvailableException();
    }

    public function update(Idea $idea)
    {
        throw new NotAvailableException();
    }
}



Hexagonal Architecture with PHP

[ 351 ]

Nice. NotAvailableRepository has the behavior that we need and we can use it with
RateIdeaUseCase because it implements IdeaRepository interface.

Next case to test is what happens if the idea is not in the repository. Listing 10 shows the
code:

class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function whenIdeaDoesNotExistAnExceptionShouldBeThrown()
    {
        $this->setExpectedException('IdeaDoesNotExistException');
        $ideaRepository = new EmptyIdeaRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $useCase->execute(
            new RateIdeaRequest(1, 5)
        );
    }
}

class EmptyIdeaRepository implements IdeaRepository
{
    public function find($id)
    {
        return null;
    }

    public function update(Idea $idea)
    {

    }
}

Here, we use the same strategy but with an EmptyIdeaRepository. It also implements the
same interface but the implementation always returns null regardless which identifier the
find method receives.

Why are we testing these cases?, remember Kent Beck's words: Test everything that could
possibly break.



Hexagonal Architecture with PHP

[ 352 ]

Let's carry on with the rest of the feature. We need to check a special case that is related
with having a read available repository where we cannot write to. Solution can be found in
Listing 11:

class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function whenRatingAnIdeaNewRatingShouldBeAdded()
    {
        $ideaRepository = new OneIdeaRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $response = $useCase->execute(
            new RateIdeaRequest(1, 5)
        );

        $this->assertSame(5, $response->idea->getRating());
        $this->assertTrue($ideaRepository->updateCalled);
    }
}

class OneIdeaRepository implements IdeaRepository
{
    public $updateCalled = false;

    public function find($id)
    {
        $idea = new Idea();
        $idea->setId(1);
        $idea->setTitle('Subscribe to php[architect]');
        $idea->setDescription('Just buy it!');
        $idea->setRating(5);
        $idea->setVotes(10);
        $idea->setAuthor('john@example.com');

        return $idea;
    }

    public function update(Idea $idea)
    {
        $this->updateCalled = true;
    }
}



Hexagonal Architecture with PHP

[ 353 ]

Ok, now the key part of the feature is still remaining. We have different ways of testing this,
we can write our own mock or use a mocking framework such as Mockery or Prophecy.
Let's choose the first one. Another interesting exercise would be to write this example and
the previous ones using one of these frameworks:

class RateIdeaUseCaseTest extends \PHPUnit_Framework_TestCase
{
    // ...

    /**
     * @test
     */
    public function whenRatingAnIdeaNewRatingShouldBeAdded()
    {
        $ideaRepository = new OneIdeaRepository();
        $useCase = new RateIdeaUseCase($ideaRepository);
        $response = $useCase->execute(
            new RateIdeaRequest(1, 5)
        );

        $this->assertSame(5, $response->idea->getRating());
        $this->assertTrue($ideaRepository->updateCalled);
    }
}

class OneIdeaRepository implements IdeaRepository
{
    public $updateCalled = false;

    public function find($id)
    {
        $idea = new Idea();
        $idea->setId(1);
        $idea->setTitle('Subscribe to php[architect]');
        $idea->setDescription('Just buy it!');
        $idea->setRating(5);
        $idea->setVotes(10);
        $idea->setAuthor('john@example.com');

        return $idea;
    }

    public function update(Idea $idea)
    {
        $this->updateCalled = true;
    }
}



Hexagonal Architecture with PHP

[ 354 ]

Bam! 100% Coverage for the UseCase. Maybe, next time we can do it using TDD so the test
will come first. However, testing this feature was really easy because of the way decoupling
is promoted in this architecture.
Maybe you are wondering about this:

$this->updateCalled = true;

We need a way to guarantee that the update method has been called during the UseCase
execution. This does the trick. This test double object is called a spy, mocks cousin.

When to use mocks? As a general rule, use mocks when crossing boundaries. In this case,
we need mocks because we are crossing from the domain to the persistence boundary.

What about testing the infrastructure?

Testing Infrastructure
If you want to achieve 100% coverage for your whole application you will also have to test
your infrastructure. Before doing that, you need to know that those unit tests will be more
coupled to your implementation than the business ones. That means that the probability to
be broken with implementation details changes is higher. So it is a trade-off you will have to
consider.

So, if you want to continue, we need to do some modifications. We need to decouple even
more. Let's see the code in Listing 13:

class IdeaController extends Zend_Controller_Action
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        $useCase = new RateIdeaUseCase(
            new RedisIdeaRepository(
                new Predis\Client()
            )
        );

        $response = $useCase->execute(
            new RateIdeaRequest($ideaId, $rating)
        );

        $this->redirect('/idea/' . $response->idea->getId());



Hexagonal Architecture with PHP

[ 355 ]

    }
}

class RedisIdeaRepository implements IdeaRepository
{
    private $client;

    public function __construct($client)
    {
        $this->client = $client;
    }

    // ...

    public function find($id)
    {
        $idea = $this->client->get($this->getKey($id));
        if (!$idea) {
            return null;
        }

       return $idea;
   }
}

If we want to 100% unit test RedisIdeaRepository we need to be able to pass the
Predis\Client as a parameter to the repository without specifying TypeHinting so we
can pass a mock to force the code flow necessary to cover all the cases.

This forces us to update the Controller to build the Redis connection, pass it to the
repository and pass the result to the UseCase.

Now, it is all about creating mocks, test cases and having fun doing asserts.

Arggg, So Many Dependencies!
Is it normal that I have to create so many dependencies by hand? No. It is common to use a
Dependency Injection component or a Service Container with such capabilities. Again,
Symfony comes to the rescue, however, you can also check PHP-DI 4.

http://php-di.org/


Hexagonal Architecture with PHP

[ 356 ]

Let's see the resulting code in Listing 14 after applying Symfony Service Container
component to our application:

class IdeaController extends ContainerAwareController
{
    public function rateAction()
    {
        $ideaId = $this->request->getParam('id');
        $rating = $this->request->getParam('rating');

        $useCase = $this->get('rate_idea_use_case');
        $response = $useCase->execute(
            new RateIdeaRequest($ideaId, $rating)
        );

        $this->redirect('/idea/' . $response->idea->getId());
    }
}

The controller has been modified to have access to the container, that's why it is inheriting
from a new base controller ContainerAwareController that has a get method to retrieve
each of the services contained:

<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="
        http://symfony.com/schema/dic/services
        http://symfony.com/schema/dic/services/services-1.0.xsd">
    <services>
        <service
            id="rate_idea_use_case"
            class="RateIdeaUseCase">
            <argument type="service" id="idea_repository" />
        </service>

        <service
            id="idea_repository"
            class="RedisIdeaRepository">
            <argument type="service">
                <service class="Predis\Client" />
            </argument>
        </service>
    </services>
</container>



Hexagonal Architecture with PHP

[ 357 ]

In Listing 15, you can also find the XML file used to configure the Service Container. It is
really easy to understand but if you need more information, take a look to the Symfony
Service Container Component site in.

Domain Services and Notification Hexagon
Edge
Are we forgetting something? the author should be notified by email, yeah! That's true. Let's see
in Listing 16 how we have updated the UseCase for doing the job:

class RateIdeaUseCase
{
    private $ideaRepository;
    private $authorNotifier;

    public function __construct(
        IdeaRepository $ideaRepository,
        AuthorNotifier $authorNotifier
    ) {
        $this->ideaRepository = $ideaRepository;
        $this->authorNotifier = $authorNotifier;
    }

    public function execute(RateIdeaRequest $request)
    {
        $ideaId = $request->ideaId;
        $rating = $request->rating;

        try {
            $idea = $this->ideaRepository->find($ideaId);
        } catch(Exception $e) {
            throw new RepositoryNotAvailableException();
        }

        if (!$idea) {
            throw new IdeaDoesNotExistException();
        }

        try {
            $idea->addRating($rating);
            $this->ideaRepository->update($idea);
        } catch(Exception $e) {
            throw new RepositoryNotAvailableException();
        }

http://symfony.com/doc/current/book/service_container.html


Hexagonal Architecture with PHP

[ 358 ]

        try {
            $this->authorNotifier->notify(
                $idea->getAuthor()
            );
        } catch(Exception $e) {
            throw new NotificationNotSentException();
        }

        return $idea;
    }
}

As you realize, we have added a new parameter for passing AuthorNotifier Service that
will send the email to the author. This is the port in the Ports and Adapters naming. We have
also updated the business rules in the execute method.

Repositories are not the only objects that may access your infrastructure and should be
decoupled using interfaces or abstract classes. Domain Services can too. When there is a
behavior not clearly owned by just one Entity in your domain, you should create a Domain
Service. A typical pattern is to write an abstract Domain Service that has some concrete
implementation and some other abstract methods that the adapter will implement.

As an exercise, define the implementation details for the AuthorNotifier abstract service.
Options are SwiftMailer or just plain mail calls. It is up to you.

Let's Recap
In order to have a clean architecture that helps you create easy to write and test applications,
we can use Hexagonal Architecture. To achieve that, we encapsulate user story business
rules inside a UseCase or Interactor object. We build the UseCase request from our
framework request, instantiate the UseCase and all its dependencies and then execute it. We
get the response and act accordingly based on it. If our framework has a Dependency
Injection component you can use it to simplify the code.

The same UseCase objects can be used from different delivery mechanisms in order to allow
users access the features from different clients (web, API, console, and so on.)

For testing, play with mocks that behave like all the interfaces defined so special cases or
error flows can also be covered. Enjoy the good job done.



Hexagonal Architecture with PHP

[ 359 ]

Hexagonal Architecture
In almost all the blogs and books you will find drawings about concentric circles
representing different areas of software. As Robert C. Martin explains in his Clean
Architecture post, the outer circle is where your infrastructure resides. The inner circle is
where your Entities live. The overriding rule that makes this architecture work is The
Dependency Rule. This rule says that source code dependencies can only point inwards.
Nothing in an inner circle can know anything at all about something in an outer circle.

Key Points
Use this approach if 100% unit test code coverage is important to your application. Also, if
you want to be able to switch your storage strategy, web framework or any other type of
third-party code. The architecture is especially useful for long-lasting applications that need
to keep up with changing requirements.

What's Next?
If you are interested in learning more about Hexagonal Architecture and other near
concepts you should review the related URLs provided at the beginning of the article, take a
look at CQRS and Event Sourcing. Also, don't forget to subscribe to google groups and RSS
about DDD such as h t t p ://d d d i n p h p . o r g and follow on Twitter people like
@VaughnVernon, and @ericevans0.

http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org
http://dddinphp.org


Bibliography
Beck, Kent. Test-Driven Development: By Example. Addison-Wesley Professional, 2002.

Brandolini, Alberto. Introducing EventStorming. Leanpub, 2016.

Evans, Eric. Domain-Driven Design Reference: Definitions and Pattern Summaries.
Dog Ear Publishing, 2014.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2003.

Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Professional, 2012.

Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices.
Pearson, 2002.

Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall, 2008.

Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley
Professional, 2007.

Newman, Sam. Building Microservices. O’Reilly Media, 2015.

http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
https://leanpub.com/introducing_eventstorming
http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin-ebook/dp/B000OZ0NAI
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358


Bibliography

[ 361 ]

Nilsson, Jimmy. Applying Domain-Driven Design and Patterns: With Examples in C#
and .NET. Addison-Wesley Professional, 2006.

Sadalage, Pramod J., and Martin Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley Professional, 2012.

Vernon, Vaughn. Domain-Driven Design Distilled. Addison-Wesley Professional, 2016.

Vernon, Vaughn. Implementing Domain-Driven Design. Addison-Wesley Professional,
2013.

http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8


The End
Congratulations, you've finished the book! We wanted to personally thank you, without
your support and feedback this book would have never been possible. It has been an
incredible journey, we feel very fortunate to count on you. We really hope you enjoyed the
ride as much as we did.

We've been obsessed about delivering the best experience possible to our readers. We've
iterated over and over the contents of the book based on your incredible feedback. If there is
anything we can improve, please help us by opening an issue in our Github project.

If you liked it and was useful to you, it might be useful for others too! Feel free to share
your experience in Twitter or give us a review in Goodreads.

Thanks again!

– Carlos, Christian and Keyvan

https://github.com/dddinphp/book-issues
https://twitter.com/intent/tweet?text=Just%20finished%20%E2%80%9CDomain-Driven%20Design%20in%20%23PHP%E2%80%9D%20by%20&#064;buenosvinos,%20&#064;theUniC%20and%20&#064;keyvanakbary%20%E2%9D%A4%EF%B8%8E.%20Check%20it%20out!%20https://leanpub.com/ddd-in-php%3Futm_source=social%26utm_medium=twitter%26utm_campaign=book_end%20&#064;dddbook
https://twitter.com/intent/tweet?text=Just%20finished%20%E2%80%9CDomain-Driven%20Design%20in%20%23PHP%E2%80%9D%20by%20&#064;buenosvinos,%20&#064;theUniC%20and%20&#064;keyvanakbary%20%E2%9D%A4%EF%B8%8E.%20Check%20it%20out!%20https://leanpub.com/ddd-in-php%3Futm_source=social%26utm_medium=twitter%26utm_campaign=book_end%20&#064;dddbook
https://www.goodreads.com/book/show/26032410-domain-driven-design-in-php


Index

A
aggregate  213
Anemic Domain Model
   avoiding  142
   code reuse, false sense  141
   encapsulating  141
   versus Rich Domain Model  136, 137, 141
Anti-Corruption layer  328, 330
API
   using  347, 348
application services
   about  125, 126, 128
   AJAX Content Integration  313
   anatomy  301
   customizing  305
   dependency inversion  302
   ESI Content Integration  314
   execution  306
   instantiating  303, 304, 305
   multiple application services  314
   on compound layouts  313
   request  297
   request objects, design  300
   request, building  298, 299
   Symfony Sub Requests  314
   testing  315, 316
   values, returning  307
Atomicity, Consistency, Isolation, Durability(ACID) 

86, 200
attribute validation  116

B
Bounded applications  184, 185
Bounded Context Integrations
   implementing  325
   message queues  330, 331, 332, 335

   modern RPC  325, 326, 328
Bounded Contexts  184, 185, 324
business
   decoupling  341, 344, 346

C
collection backed, by Join Table
   by database entity  85
   with Ad Hoc ORM  85
   with Doctrine  82
collection-oriented Repositories
   about  265, 266, 269, 270
   Doctrine ORM  272
   in-memory implementation  271
command handlers
   about  320
   Tactician library  320, 321
concurrency, key concepts
   Optimistic Concurrency Control (OCC)  207
   Pessimistic Concurrency Control (PCC)  205
Conformist integration  325, 328
Console App Rating  349
Customer-Supplier  330

D
Data Access Objects (DAOs)  264, 265
data store
   integrating  322, 323, 324
Data Transfer Object (DTO)  346
DateTimes, entites
   dates, passing as parameters  110
   external fake  113
   reflection  115
   test class  111
dependencies
   creating  355
dependency inversion  302



[ 364 ]

Dependency Rule  359
Doctrine Events  152
Doctrine ORM
   about  272
   object mapping  273
Doctrine Query Language (DQL)  272
Doctrine
   entities mapping, XML used  102, 103
   entities, mapping  100
   entity identity, mapping  103
   file, mapping  105
   setting up  99
Domain Events characteristics
   about  148
   immutability  149
   naming conventions  148
   Ubiquitous language  149
Domain Events
   about  122, 319
   defining  144, 145
   DomainEventListeners, setting up  163
   Event Store  155
   example  146, 148
   metaphor  146
   modeling  149, 151
   persisting  154
   publisher, working  161
   publishing, from application services  161
   publishing, from Domain model  158
   publishing, from Domain services  161
   publishing, from entity  158
   testing  165
Domain Services  358
Domain services
   about  125, 128, 130
   code reuse, issues  133
   testing  135
Domain-Driven Design (DDD)
   about  7, 8, 336
   considering  10
   reference link  7
   strategic design  8
   strategical, overview  11
   tactical design  8
   three pillars  8

   tricky parts  11
   ubiquitous language  8
   Ubiquitous Language  9

E
entire object validation  118
entities
   about  88, 122
   DateTimes  109
   Doctrine, setting up  99
   mapping, Annotated Code used  100, 102
   persisting  99
   testing  106
entity
   versus value objects  51
execution, application services
   class method  306
   multiple class method  306

F
factories
   Object Mother  258
   Test Data Builder  259
   testing  257
Factory Method
   aggregates, building  254, 255
   invariants, forcing  248
   on Aggregate Root  247, 248
   on service  249
   specifications, building  249, 251, 253
fanout  335
first-level namespacing  180

H
Hexagonal Architecture  336
   about  359
   approach  337, 339
   exploring  359
   reviewing  358
hydration  159

I
identity operation
   about  92



[ 365 ]

   application, generating  96, 97, 98
   Bounded Context  99
   identity, provided by client  95
   persistence mechanism  92
Immutable  148
in-memory implementation  271
infrastructure services  125, 130
infrastructure
   testing  354
integrated development environment (IDEs)  79
Integration Relationships
   about  324
   Conformist  325
   Customer-Supplier  324
   Separate Ways  324
International Standard Book Number (ISBN)  96

J
JavaScript Object Notation (JSON)  86

K
key concepts
   about  200
   ACID  201
   concurrency  205
   isolation levels  204
   locking  205
   referential integrity  204
   transactions  201, 202, 203
key points  359

L
leverage modules
   first-level namespacing  180
   in PHP  180
   PEAR-style namespacing  180, 181

M
message queues  331, 332, 335
messaging middleware  331
Microservices  12, 13
modern RPC  325, 326, 328
modules
   application layer  198

   code, structuring in  185, 186
   design guidelines  187, 188
   infrastructure layer  190, 191, 195
   overview  180
   technologies, mixing  196
monolithic system  322

N
NoSQL, value objects characteristics
   MySQL JSON type  86
   PostgreSQL JSONB type  86
Notification Hexagon Edge  358

O
object compositions
   validating  122
object mapping, Doctrine ORM
   Doctrine Custom Mapping Types  273, 275
   DQL implementation  276
   entity manager  276
Online Travel Agency (OTA)  11
Open Closed Principle (OCP)  144
Open Host Service  325, 330
Optimistic Concurrency Control (OCC)
   about  207
   reference link  207

P
PEAR-style namespacing
   about  180, 181
   PSR-0 namespacing  181
   PSR-4 namespacing  181
persistence edge  339, 341
persistence mechanism, identity operation
   Active Record, versus Data Mapper for Rich

Domain Models  94
   Surrogate Identity  93
persistence-oriented Repository
   about  278
   extra behavior  284
   Redis implementation  278
   SQL implementation  280
persistence
   decoupling  341
   migrating, to Redis  343



[ 366 ]

Pessimistic Concurrency Control (PCC),
concurrency

   with Doctrine  206, 210
   with Elasticsearch  207, 208, 209, 210, 211, 212
PHP Standard Recommendation (PSR)  181
PHP
   leverage modules in  180
Ports and Adapters  336
primitive type
   versus value objects  90
Published Language  331

R
remote Bounded Contexts
   about  166
   Domain services, syncing with REST  176
   messaging  166, 171, 172, 173
replaceability, value objects characteristics
   side-effect-free behaviour  59, 60
repositories  339, 341
Repositories
   defining  264
   querying  284
   specification pattern  285
   testing  291
request objects
   business logic, avoiding  300
   designing  300
   primitives, using  300
   serializable  300
   tests, avoiding  300, 301
Rich Domain Model
   versus Anemic Domain Model  136, 137, 141

S
security  319
Security  87
Self-Contained Systems (SCS)  12, 13
separate ways  324
Separation of Concerns (Soc)  15
Serialize LOB, value objects characteristics
   Doctrine Custom Type  76
   Doctrine Object Mapping Type  74
   value objects, collection persisting  79
   value objects, collection serializing into single

column  80
Serialized LOB, value objects characteristics
   improved serialization, with JMS Serializer  73
services
   testing, with in-memory implementations  295
Single Responsibility Principle (SRP)
   about  339
   reference link  339
specialized, shared, and common communication

language  331
specification pattern, Repositories
   in-memory implementation  285, 286
   SQL implementation  287
strategical design  322

T
Tactician library  320, 321
transactions
   about  317
   managing  288, 289

U
Ubiquitous Language
   about  9
   event storming  9, 10
UseCase
   testing  350, 351, 352, 353, 354

V
validation messages
   decoupling  120
validation
   about  116
   attribute validation  116
   entire object validation  118
   object compositions, validating  122
   validation messages, decoupling  120
value objects characteristics
   about  54
   Ad Hoc ORM  72
   basic types  61
   collection backed, by Join Table  81
   conceptual whole  56
   embedded value, with Ad Hoc ORM  64
   embedded value, with Doctrine 2.4  69, 71



   embedded value, with Doctrine 2.5  67
   immutability  54, 55
   money object, describes  54
   money object, measures  54
   money object, quantifies  54
   NoSQL  86
   persisting  63, 64
   replaceability  59
   Serialized LOB  72
   Serialized LOB, with Doctrine  74
   single value objects, persisting  64
   testing  61
   value equality  57, 58

value objects
   defining  50, 51
   example  52
   versus entity  51
   versus primitive type  90
values, application services
   data transformers  310, 311, 312, 313
   DTO, from aggregate instances  308, 310

W
web framework
   decoupling  344, 346


	Cover

	Copyright
	Credits
	Foreword
	About the Authors
	Acknowledgments
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Domain-Driven Design
	Why Domain-Driven Design Matters
	The Three Pillars of Domain-Driven Design
	Ubiquitous Language
	Event Storming


	Considering Domain-Driven Design
	The Tricky Parts
	Strategical Overview
	Related Movements: Microservices and Self-Contained Systems
	Wrap-Up

	Chapter 2: Architectural Styles
	The Good Old Days
	Layered Architecture
	Model-View-Controller
	Example of Layered Architecture
	The Model
	The View
	The Controller

	Inverting Dependencies: Hexagonal Architecture
	The Dependency Inversion Principle (DIP)
	Applying Hexagonal Architecture

	Command Query Responsibility Segregation (CQRS)
	The Write Model
	The Read Model
	Synchronizing the Write Model with the Read Model


	Event Sourcing
	Wrap-Up

	Chapter 3: Value Objects
	Definition
	Value Object vs. Entity
	Currency and Money Example
	Characteristics
	Measures, Quantifies, or Describes
	Immutability
	Conceptual Whole
	Value Equality
	Replaceability
	Side-Effect-Free Behavior

	Basic Types
	Testing Value Objects
	Persisting Value Objects
	Persisting Single Value Objects
	Embedded Value with an Ad Hoc ORM
	Embedded Value (Embeddables) with Doctrine >= 2.5.*
	Embedded Value with Doctrine <= 2.4.*

	Serialized LOB and Ad Hoc ORM
	Improved Serialization with JMS Serializer

	Serialized LOB with Doctrine
	Doctrine Object Mapping Type
	Doctrine Custom Types
	Persisting a Collection of Value Objects
	Collection Serialized into a Single Column
	Collection Backed by a Join Table
	Collection Backed by a Join Table with Doctrine
	Collection Backed by a Join Table with an Ad Hoc ORM

	Collection Backed by a Database Entity

	NoSQL
	PostgreSQL JSONB and MySQL JSON Type


	Security
	Wrap-Up

	Chapter 4: Entities
	Introduction
	Objects Vs. Primitive Types
	Identity Operation
	Persistence Mechanism Generates Identity
	Surrogate Identity
	Active Record Vs. Data Mapper for Rich Domain Models

	Client Provides Identity
	Application Generates Identity
	Other Bounded Context Generates Identity

	Persisting Entities
	Setting Up Doctrine
	Mapping Entities
	Mapping Entities Using Annotated Code
	Mapping Entities Using XML
	Mapping Entity Identity
	Final Mapping File


	Testing Entities
	DateTimes
	Passing All Dates as Parameters
	Test Class
	External Fake
	Reflection


	Validation
	Attribute Validation
	Entire Object Validation
	Decoupling Validation Messages

	Validating Object Compositions

	Entities and Domain Events
	Wrap-Up

	Chapter 5: Services
	Application Services
	Domain Services
	Domain Services and Infrastructure Services
	An Issue of Code Reuse

	Testing Domain Services
	Anemic Domain Models Vs Rich Domain Models
	Anemic Domain Model Breaks Encapsulation
	Anemic Domain Model Brings a False Sense of Code Reuse
	How to Avoid Anemic Domain Models

	Wrap-Up

	Chapter 6: Domain-Events
	Introduction
	Definition
	Short Story
	Metaphor
	Real-World Example

	Characteristics
	Naming Conventions
	Domain Events and Ubiquitous Language
	Immutability

	Modeling Events
	Doctrine Events
	Persisting Domain Events
	Event Store

	Publishing Events from the Domain Model
	Publishing a Domain Event from an Entity
	Publishing your Domain Events from Domain or Application Services
	How the Domain Event Publisher Works
	Setting Up DomainEventListeners
	Testing Domain Events

	Spreading the news to Remote Bounded Contexts
	Messaging
	Syncing Domain Services with REST

	Wrap-Up

	Chapter 7: Modules
	General Overview
	Leverage Modules in PHP
	First-Level Namespacing
	PEAR-Style Namespacing
	PSR-0 and PSR-4 Namespacing


	Bounded Contexts and Applications
	Structuring Code in Modules
	Design Guidelines
	Modules in the Infrastructure Layer
	Mixing Different Technologies
	Modules in the Application Layer

	Wrap-Up

	Chapter 8: Aggregates
	Introduction
	Key Concepts
	ACID
	Transactions
	Isolation Levels
	Referential Integrity
	Locking
	Concurrency
	Pessimistic Concurrency Control (PCC)
	With Doctrine

	Optimistic Concurrency Control
	With Elasticsearch
	With Doctrine



	What Is an Aggregate?
	What Martin Fowler Says...
	What Wikipedia Says...

	Why Aggregates?
	A Bit of History
	Anatomy of an Aggregate
	Aggregate Design Rules
	Design Aggregates Based in Business True Invariants
	Small Aggregates Vs. Big Aggregates
	Reference Other Entities by Identity
	Modify One Aggregate Per Transaction and Request

	Sample Application Service: User and Wishes
	No Invariant, Two Aggregates
	No More Than Three Wishes Per User
	Pessimistic Concurrency Control
	Optimistic Concurrency Control


	Transactions
	Wrap Up

	Chapter 9: Factories
	Factory Method on Aggregate Root
	Forcing Invariants

	Factory on Service
	Building Specifications
	Building Aggregates

	Testing Factories
	Object Mother
	Test Data Builder

	Wrap-Up

	Chapter 10: Repositories
	Definition
	Repositories Are Not DAOs
	Collection-Oriented Repositories
	In-Memory Implementation
	Doctrine ORM
	Object Mapping
	Doctrine Custom Mapping Types

	Entity Manager
	DQL Implementation


	Persistence-Oriented Repository
	Redis Implementation
	SQL Implementation
	Extra Behavior

	Querying Repositories
	Specification Pattern
	In-Memory Implementation
	SQL Implementation


	Managing Transactions
	Testing Repositories
	Testing Your Services with In-Memory Implementations
	Wrap-Up

	Chapter 11: Application
	Requests
	Building Application Service Requests
	Request Design
	Use Primitives
	Serializable
	No Business Logic
	No Tests


	Anatomy of an Application Service
	Dependency Inversion
	Instantiating Application Services
	Customize an Application Service

	Execution
	One Class Per Application Service
	Multiple Application Service Methods per Class

	Returning Values
	DTO from Aggregate Instances
	Data Transformers

	Multiple Application Services on Compound Layouts
	AJAX Content Integration
	ESI Content Integration
	Symfony Sub Requests
	One Controller, Multiple Application Services


	Testing Application Services
	Transactions
	Security
	Domain Events
	Command Handlers
	Tactician Library and Other Options

	Wrap-Up

	Chapter 12: Integrating Bounded Contexts
	Integration Through the Data Store
	Integration Relationships
	Customer - Supplier
	Separate Ways
	Conformist

	Implementing Bounded Context Integrations
	Modern RPC
	Message Queues

	Wrap-Up

	Appendix: Hexagonal Architecture with PHP
	Introduction
	First Approach
	Repositories and the Persistence Edge
	Decoupling Business and Persistence
	Migrating our Persistence to Redis
	Decouple Business and Web Framework
	Rating an Idea Using the API
	Console App Rating
	Testing Rating an Idea UseCase
	Testing Infrastructure
	Arggg, So Many Dependencies!
	Domain Services and Notification Hexagon Edge
	Let's Recap
	Hexagonal Architecture
	Key Points
	What's Next?

	Bibliography
	The End
	Index



